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Abstract. 18F-fluorodeoxyglucose positron emission tomography – com-
puted tomography (FDG PET-CT) is now the best imaging technique
to accurately stage non-small cell lung cancer (NSCLC). While an auto-
mated lesion detection system would help to reduce the time consump-
tion and inter-observer differences in manual image interpretation, the
accuracy of automated lesion detection is often limited by the inter-
subject variation in normal and tumoural FDG uptake. In this paper,
we propose a latent discriminative model to detect the lesions from tho-
racic images. With this model design, slice-level thresholds of FDG up-
take are derived via latent variables during discriminative learning. We
thus leveraged the benefit of supervised learning to address the inter-
subject variation while explicitly modeling the functional characteristics.
We evaluated our proposed method on a clinical dataset and obtained
good detection performance.

1 Introduction

Lung cancer is the leading cause of cancer death in many countries. FDG PET-
CT is now the best imaging technique to accurately stage non-small cell lung
cancer (NSCLC), which is the main primary lung malignancy. Accurate detection
of lesions is an essential step towards the staging and treatment planning of
patients, but is a time-consuming process in the clinical work flow. The inter-
observer differences can also introduce mistakes or inconsistencies in manual
detection of lesions.

An automated lesion detection system helps to alleviate these problems with
manual interpretation, but the accuracy of detection might be unsatisfactory.
Thresholding of the standard uptake value (SUV) in PET has been a common
way of lesion detection in clinical research, since lesions typically appear as focal
regions of increased FDG uptake, i.e. higher SUVs, in PET images. A simple
method to determine the threshold is to use an SUV of value 2.5 or 40% of the
maximum SUV [1–5]. Such thresholding techniques have been widely used in
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Fig. 1. Two examples showing the thresholding outputs using the standard SUV
threshold of 2.5 or 40% of the maximum SUV. Axial slices (CT and PET) after prepro-
cessing (see Section 2.3) are shown. The red contours drawn on the CT images indicate
the detected lesions using the respective thresholding techniques. Both techniques re-
sult in some false positives in both cases.

clinical studies due to their simplicity. However, with individual heterogeneity
in the degree of FDG uptake, these techniques often result in excessive false
positive or negative detection of lesions. Fig. 1 shows two examples when the
standard SUV thresholds are not effective. The first example illustrates that
40% of maximum SUV identifies many false positives when there is low contrast
between the lesion and background. The problem with the second example is
caused by the slightly elevated FDG uptake in normal tissue.

Some studies suggest to use subject-adaptive threshold based on background
SUV from manually annotated regions in the mediastinum or liver [6, 7]. Fol-
lowing these findings, methods with automatic background estimation have re-
ported performance advantage in lesion detection [8, 9]. However, there could be
pathologies in the mediastinum or liver, and the automatic estimation of back-
ground regions could mistakenly include these areas and affect the resultant
SUV threshold. One way to address this issue is to further process the thresh-
olding output based on the similarity information between image patches within
a subject [10, 11]. The method design, however, is relatively complex.

Another type of methods includes more features to identify the lesions. For
example, spatial features or information from CT have been used to refine the
thresholding results [12–18]. However, the rule-based refinement is generally
heuristic and might not generalize well to unseen data. Other studies have in-
corporated supervised learning with mainly texture feature descriptors for lesion
detection [19–25]. Although these approaches are more data adaptive compared
to using predefined rules, the effectiveness of these methods can be limited by
the discriminative power of the feature descriptors and the ability of classifiers
to cope with the feature space overlap between normal tissue and lesion.

For this study we designed a latent discriminative model to detect lesions
in thoracic FDG PET-CT images from NSCLC patients. Our method aims to
compute subject-adaptive SUV threshold for distinguishing the normal tissue
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and lesion. Different from the existing approaches, we model the slice-level SUV
thresholds as latent variables in a discriminative construct, so that the thresholds
are linked with the classification objective via feature representation, and are
optimized at the slice-level with supervised learning. Subject-level threshold is
then obtained by averaging the slice-level thresholds.

Our method design is inspired by the latent support vector machine (LSVM)
in the deformable parts model [26], which has been widely used in general com-
puter vision [27, 28]. With LSVM, important but unlabeled data (e.g. object
part locations), are treated as latent variables and optimized during an iterative
learning process. In our study, we consider that a subject-adaptive SUV thresh-
old is essential for correctly detecting lesions. It would be sub-optimal to obtain
the threshold based on some heuristic rules or learn a monolithic discriminative
classifier (e.g. SVM) from a training population. We suggest that the latent dis-
criminative model provides an efficient way to associate the adaptive threshold
computation with the classification objective.

2 Methods

In this work, we model the SUV threshold as a latent variable that affects the
feature descriptors of image regions, which are used to classify normal tissue
and lesion in a supervised learning construct. To better present our method,
we first give some background of the existing work [11] then provide a detailed
description of our model.

2.1 Background

It is proposed in the work [11] that the thoracic image (after preprocessing to
remove the background) can be divided into four areas: (i) the normal lung fields;
(ii) the area clearly representing the normal mediastinum; (iii) the abnormal area
with high FDG uptake; and (iv) the area with slightly elevated FDG uptake
and potentially containing a mixture of normal and abnormal tissues. Area (i)
is obtained by Otsu thresholding of the CT densities. The remaining image
patches are partitioned into the latter three areas based on an automatically
computed SUV threshold SUVth: image patches with average SUV < SUVth

are categorized as Area (ii); image patches with average SUV > 1.5SUVth as
Area (iii); and the rest as Area (iv). With an improved sparse representation
algorithm incorporating the reference and spatial consistency constraints [11],
the image patches in Area (iv) are further classified as normal or abnormal
patches; and the abnormal patches together with Area (iii) become the detected
lesions. SUVth is subject specific and is computed as:

SUVth = 0.15 SUVmax + SUVmed, (1)

where SUVmax is the maximum SUV of the subject, SUVmed is the average SUV
in the mediastinum and this mediastinum is a rough estimation based on the
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Fig. 2. Illustration of method flow. First, an initial threshold SUVth is computed. Next,
a feature vector is computed based on the three areas identified with the threshold. By
varying the threshold from SUVth to SUVth + 2, a set of feature vectors is obtained.
Then, with the learned weight vector ω, the threshold producing the highest score S
is selected as the optimal threshold. Such slice-level thresholds are averaged to obtain
the subject-level threshold, and lesion objects are finally detected.

CT density, SUV and location in the thorax. While this method [11] produces
highly accurate lesion detection results, the design of the sparse representation
algorithm is quite complex with relatively high computational cost and does not
involve discriminative learning.

2.2 Latent Discriminative Model

In this work, we propose a latent discriminative model to embed slice-level SUV
thresholds as latent variables in an LSVM classifier, so that optimal thresholds
are iteratively derived during an SVM optimization for classification between
normal tissue and lesion. Compared to the work [11], our model is expected to
be more efficient and provide more effective lesion detection by incorporating
discriminative learning based on supervised information. The method flow is
illustrated in Fig. 2.
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We first use the SUVth from Eq. (1) to perform an initial region-of-interest
(ROI) detection. Image patches of 5× 5 voxels with average SUVs > SUVth are
identified, and a set of connected patches forms an ROI. These ROIs typically
include many false positives and the size of a true positive can be much larger
than the actual size of a lesion.

A feature descriptor for an ROI r is then computed to represent the likeliness
of r being a lesion. To do this, assume a slice-level SUV threshold z is given for
the axial slice containing r. Based on this z, the slice is partitioned into three
areas: (a) the normal lung fields by Otsu thresholding of CT densities; (b) the
area with average SUV < z excluding the lung fields; and (c) the area with
average SUV ≥ z. A four-dimensional feature vector φ(r, z) is then computed
as {ur/u2, ur/u3, u2/u1, u3/u1}, where u1, u2, and u3 are the average SUVs of
the three areas, ur is the average SUV of r, and the threshold z is implicitly
utilized in the feature vector via u2 and u3. The first two dimensions describe
the SUV contrasts between the ROI r and areas (b) and (c), and are helpful in
deciding whether r is a lesion. The latter two dimensions represent the overall
characteristics of the slice, and are useful as reference contrasts to complement
the first two dimensions.

If the given threshold z is optimal, we expect the highest score from the
following function:

S =
∑
j

|ω · φ(rj , z)− b|, (2)

where {rj} denotes the set of ROIs in the slice, ω is a four-dimensional weight
vector, and b is the bias term. In other words, a better threshold is expected
to generate a larger positive or negative value with ω · φ(rj , z) − b for lesion or
normal ROI; and the total absolute score S from all ROIs in the slice is larger as
well. Therefore, the optimal slice-level threshold z can be obtained by searching
over a range of possible thresholds from z0 = SUVth to z0 + 2:

z = argmax
k

∑
j

|ω · φ(rj , k)− b|, k = z0, z0 + 0.1, ..., z0 + 2. (3)

The above feature vector computation and threshold derivation are con-
ducted for each slice in the thoracic image. The derived slice-level thresholds
of a subject are then averaged to generate the subject-level threshold, which
helps to characterize the overall FDG uptake distribution of a subject. Sub-
sequently, the image patches with average SUV higher than this subject-level
threshold are labeled as lesion regions; and these regions are then connected in
3D to obtain the lesion objects.

To learn the model parameters ω and b, we formulate an LSVM model with
the threshold z as the latent variable:

argmin
ω,ξ,b

1

2
‖ω‖2 + C

∑
i

ξi

s.t. yi(ω · φ(ri, zi)− b) ≥ 1− ξi, ξi ≥ 0, ∀i
(4)



6 Y. Song et al.

where {ri} denotes a set of ROIs as the training data, with label yi ∈ {−1, 1}
indicating normal tissue or lesion. The parameters ξi and C follow the definitions
in a standard SVM. The key idea is the inclusion of latent variable zi, which
denotes the optimal slice-level SUV threshold to classify ri. It affects the feature
vector φ(ri, zi) of ri, but its value is unknown for the training and testing sets.
An iterative approach is applied to solve Eq. (4):

Step 1: Initialize ω = 1 and b = 0.
Step 2: With ω and b fixed, infer zi using Eq. (3).
Step 3: With zi fixed, learn ω and b using linear SVM.
Steps 2 and 3 are repeated until convergence.

2.3 Experiment

In this study, we used 95 sets of FDG PET-CT images from NSCLC patients as
the test dataset. A total of 184 lesions were annotated based on the clinical notes
from a senior radiologist. A separate dataset of 5 subjects with 12 lesions was
used as the training set and not included for testing. The training set exhibited
the typical lesion characteristics with various degrees of contrast between the
lesion and normal tissues. The images were first preprocessed automatically to
remove the background and soft tissues outside the lung fields and mediastinum,
based on simple morphological operations including Otsu thresholding and con-
nected component analysis. The myocardium area was localized based on the
location in the thorax and excluded from the lesion detection and evaluation.

We used recall, precision and F-score as the object-level evaluation metrics.
A detected lesion object with at least 50% overlap with the annotated ground
truth was marked as true positive. The Dice coefficient, which computed the
degree of overlap between the detected lesion and ground truth at the voxel-
level, was also measured. For performance comparison, we applied the following
techniques to detect the lesions: (i) the sparse representation algorithm [11],
which we introduced in Section 2.1; (ii) thresholding using SUVth; (iii) thresh-
olding using SUV of 2.5; (iv) thresholding using 40% of the maximum SUV;
(v) classification of initially detected ROIs using a linear-kernel SVM, for which
our four-dimensional feature vector was computed based on SUVth without the
iterative searching of an optimal threshold.

3 Results

Fig. 3 shows the object-level detection performance. Compared to the sparse
representation approach [11] and SVM technique, our method achieved higher
recall, precision and F-score. A main advantage of our method over [11] was the
lower false negatives. The lesions with relatively low FDG uptake were especially
difficult to detect, and our method was more effective in handling some cases.
An example is shown in Fig. 4. There were still some false positives detected
in the mediastinum, which typically had irregular shapes and could potentially
be filtered based on morphological analysis. The SVM technique failed to detect
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Fig. 3. Lesion detection results using the various techniques.

Fig. 4. Example results showing that our method was more effective in detecting lesions
with relatively low FDG uptake when compared to [11].

many lesions, even for lesions showing relatively high contrast from the back-
ground. It could only detect lesions with average SUVs that were high in a global
(i.e. dataset-wise) scope. For subjects with relatively high FDG uptake in normal
tissues, more false positives were produced as well. These findings indicate the
limitation of a monolithic classifier such as SVM in accommodating the large
variations in FDG uptake between subjects.

The results of Dice coefficient are shown in Fig. 5. The improvement of our
method over [11] was mainly because the latter approach often produced a larger
volume for a detected lesion while our method could better approximate the ac-
tual object boundaries. Sometimes if two lesions are spatially close, the sparse
representation approach [11] could result in a detected region enclosing both
lesions (example in Fig. 6). With a simple 3D connected component analysis,
the two lesions would be linked as one lesion object, resulting in a false negative
detection at the object-level for the small lesion. The low Dice value of the SVM
technique was mainly caused by the large number of false negatives. The SUV
thresholding techniques (SUVth, SUV 2.5 and 40% maximum SUV) generated
many false positives, causing the lower Dice values. Fig. 7a shows the statistics
of the derived subject-level SUV thresholds, i.e. maximum, minimum and three
quantiles, using our method, SUVth and 40% maximum SUV. Fig. 7b shows the
statistics of the threshold differences between our method and the three thresh-
olding techniques. It can be seen that our method generally produced higher
thresholds, hence largely reducing the amount of false positives. Note that we
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Fig. 5. Dice results of the various detection techniques.

Fig. 6. Example results showing that our proposed method obtained better approxi-
mation of the lesion boundaries when compared to [11].

Fig. 7. (a) Box plots of the derived subject-level SUV thresholds using the various
methods. (b) Box plots of the differences in SUV thresholds between our method and
the three thresholding techniques (SUVth, SUV 2.5 and 40% maximum SUV).
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did not report the object-level recall, precision and F-score measures for the three
thresholding techniques, because there were excessive amounts of false positives
and their sizes were often very small or large. We suggest that the object-level
measures were not fair indicators to quantify such detection results. In addition,
we would like to mention that our method was not intended as a segmentation
approach and the ground truth delineations were not optimized for voxel-wise ac-
curacy, hence the Dice results were not used to show the segmentation accuracy
but the extent of false positive or negative voxels detected.

Fig. 8 shows the Dice coefficients when different numbers of iterations were
used to train the LSVM model for learning the model parameters. At iteration 0,
the weight vector ω was set to 1 and the bias term b as 0, and the slice-level SUV
thresholds were searched using these initial settings. At subsequent iterations,
the learned model parameters were used to search for the optimal thresholds.
It can be seen that the Dice value improved considerably during the first three
iterations, then stayed relatively flat afterwards. These results indicate that the
training process was quite efficient requiring only a small number of iterations.

Fig. 8. Dice results corresponding to the various numbers of iterations used for LSVM
training.

Our method was implemented in Matlab on a standard PC. On average for
each image/subject, the time for lesion detection was 1.8 s. This was more effi-
cient when compared to the sparse representation approach [11], which required
on average 62 s per image.

4 Conclusions

We present an adaptive method for detecting lesions from thoracic FDG PET-
CT images in this paper. We designed a latent discriminative model, in which the
slice-level SUV thresholds are incorporated as the latent variables to compute the
feature vectors. Based on the model parameters learned from this discriminative
model, subject-adaptive thresholds are derived by maximizing a score function,
and then used to detect the lesions. We conducted the experiment on a clinical
dataset of NSCLC patients, and demonstrated improved performance over the
existing approaches.
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