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Abstract. Medical images typically exhibit complex feature space dis-
tributions due to high intra-class variation and inter-class ambiguity.
Monolithic classification models are often problematic. In this study, we
propose a novel Large Margin Local Estimate (LMLE) method for med-
ical image classification. In the first step, the reference images are sub-
categorized, and local estimates of the test image are computed based
on the reference subcategories. In the second step, the local estimates
are fused in a large margin model to derive the similarity level between
the test image and the reference images, and the test image is classi-
fied accordingly. For evaluation, the LMLE method is applied to clas-
sify image patches of different interstitial lung disease (ILD) patterns on
high-resolution computed tomography (HRCT) images. We demonstrate
promising performance improvement over the state-of-the-art.

1 Introduction

Image classification can be considered the underlying task in many medical imag-
ing problems, such as tissue segmentation, lesion detection and disease differen-
tiation. The classification framework typically comprises feature extraction and
learning-based classification. Ideally, images of the same class should have highly
similar features and images of different classes should have quite dissimilar fea-
tures. Well-isolated and compact clusters would form in the feature space with
each cluster representing a certain class of images. In real cases, however, fea-
tures of the same class could naturally be grouped into multiple clusters due
to large intra-class variation, while the feature space separation between differ-
ent classes could be unclear due to high inter-class ambiguity. It would thus be
difficult to build a monolithic model, e.g. support vector machine (SVM) and
Bayesian classifiers, to represent and classify each class accurately.

To tackle this problem, sub-categorization has recently been proposed for gen-
eral imaging problems, such as face recognition [12], head orientation recognition
[3], and object detection and classification [2]. By clustering the feature space of
each class into multiple subcategories, locally adaptive classifiers are generated
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and the classification performance would be improved. These approaches nor-
mally assume the clustering results would automatically correspond to accurate
classification or require only simple fusion of the subcategory results, hence the
design emphases have been on the clustering techniques such as graph shift [2]
and discriminative optimizations [12, 3]. However, for cases with complex fea-
ture space distributions due to intra-class variation and inter-class ambiguity, it
might be a real challenge to obtain good clustering.

Alternatively, sparse representation (SR) has been widely used for medical
imaging analysis in place of parametric classifiers [6, 9, 4, 8, 11, 7]. Rather than
parametric modeling of the feature space separation, SR classifies a feature vector
based on its reconstruction error with reference dictionaries. The classification is
locally adaptive to the testing data, and could potentially accommodate complex
feature space distributions. However, since the optimization goal of SR is to
minimize the reconstruction error even for the wrong classes, the optimization
process is generally not directly related to the classification objective and hence
the classification accuracy might not be very impressive when compared to the
discriminative classifiers such as SVM.

In this work, we propose a new Large Margin Local Estimate (LMLE) method
to classify medical images with large intra-class variation and inter-class ambigu-
ity. Our method consists of two main components: (1) local estimate computation
- by clustering the reference dictionaries into subcategories, the subcategory-level
estimates are derived for the test image with SR; and (2) large margin aggre-
gation - the test image is classified by fusing the top-ranked local estimates
in a learning-based large margin model. Our design novelties are summarized
as follows. First, different from the existing sub-categorization approaches, our
method of subcategory clustering is less complicated and we design a large mar-
gin aggregation model to combine the subcategory results for more accurate
classification. Second, different from the standard SR that uses the entire ref-
erence dictionary, we derive local estimates based on the subcategories so that
a relatively large reconstruction error could be obtained for the wrong classes.
Third, while our large margin aggregation model is conceptually similar to the
large margin nearest neighbor (LMNN) algorithm [10], our formulation is to min-
imize the distance between the test image and the sparse reconstruction from the
correct class and penalize better reconstruction from the wrong classes. Lastly,
we have applied our LMLE method to classify five ILD disease types on a large
HRCT database and obtained promising performance improvement. The pro-
posed method can be applicable to other classification problems as well.

2 Methods

Assume L sets of reference images corresponding to L classes are available. For
each reference image, its H-length feature vector is precomputed and denoted
by rli ∈ RH , with l ∈ {1, ..., L} as the class label, i is the index of the image in
the lth reference set. The reference set of class l is represented by Rl = {rli : i =
1, ..., Nl}. Given a test image I with feature vector f ∈ RH , our aim is to classify
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Fig. 1. Method illustration. This example assumes the dataset contains three classes,
each reference set is sub-categorized into three clusters, and the classification is based
on top two local estimates. Detailed explanation is referred to Sections 2.1 and 2.2.

it into one of L classes based on the reference images {Rl}. Figure 1 illustrates
the overall design of the proposed LMLE method. In this section, r and f are
semantically the same and both denote the image feature vectors, but r refers
to the reference images specifically while f indicates the test image.

2.1 Local Estimate Computation with Sub-categorization

In the first step, we derive the local estimates for the test image based on the sub-
categories of the reference images. In standard SR, the underlying assumption
is that a better reconstruction corresponds to higher similarity between the test
image and the reference images, and the class is determined by the most similar
reference set. However, with large intra-class variation, a good reconstruction
for the wrong class would become highly possible by combining reference images
with quite different features. We thus propose to sub-categorize the reference
set of each class to minimize the feature variation within each subcategory, and
the sparse reconstruction at the subcategory-level represents the local estimate
of the test image by the reference images in the subcategory. We suggest that
the collection of local estimates would better describe the actual similarity be-
tween the test image and the reference set. With the large margin aggregation
method (Section 2.2), our method does not impose stringent requirement on the
compactness and separation of the subcategories, and we thus choose to design
a relatively simple sub-categorization algorithm.

Formally, given a reference set Rl, our aim is to cluster it into K subcategories
of similar features. We measure the similarity between two feature vectors rli and
rlj in Rl by two criteria: (1) feature value ‖rli − rlj‖2; and (2) feature separation
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‖dli−dlj‖2, in which dli is a L−1 dimensional vector with each element representing

the mean Euclidean distance between rli and C reference images in Rl′ 6=l that
are most similar to rli, and C is set to 0.1Nl′ . The images belonging to one
subcategory would thus have similar features and similar separation from the
other classes. The clustering objective is then formulated as:

argmin
Sl

K∑
k=1

∑
rli∈Sl

k

(‖rli − µl
k‖2 + ‖dli − θlk‖2) =

K∑
k=1

∑
rli∈Sl

k

∥∥∥∥( rlidli
)
−
(
µl
k

θlk

)∥∥∥∥2 (1)

where Sl = {Sl
k : k = 1, ...,K} represents the K subcategories of reference

set Rl, µ
l
k and θlk represent the mean rli and dli in the subcategory Sl

k. This
sub-categorization problem can then be solved using k-means clustering.

Next, for a test image I with feature vector f , its local estimate f lk ∈ RH

by a subcategory Sl
k is computed using SR. To do this, a subcategory-level ref-

erence dictionary Dl
k ∈ RH×N l

k is first constructed by concatenating the feature
vectors of reference images in Sl

k. Here N l
k is the number of images in Sl

k. Sparse
reconstruction is then formulated to derive the local estimate f lk:

argmin
xl
k≥0

‖f −Dl
kx

l
k‖2 + α‖xlk‖1; f lk = Dl

kx
l
k (2)

We choose to impose the non-negativity constraint on the weight vector xlk to
restrict the reconstruction performance, and the regularization parameter α is
set to 0.1. The SLEP package [5] is used to solve the optimization problem.

2.2 Classification with Large Margin Aggregation

In the second step, we classify the test image I based on the L×K local estimates
{f lk}. Many fusion algorithms can be applied, such as the max or mean pooling,
i.e. selecting the most similar local estimate or computing the mean estimate
from each class. A kNN approach is also possible, by selecting a number of local
estimates that are closest to f from each class, and assigning I to the class
with the highest similarity level between f and the selected estimates. However,
due to large inter-class ambiguity, f could be similar to certain subcategories
of the wrong classes, and the corresponding local estimates could be very close
to f , hence affecting the kNN accuracy. To overcome this issue, we propose a
large margin aggregation model to fuse the local estimates for classification. The
main idea is to learn a transformation matrix in a large margin construct so that
local estimates from the wrong classes would become more distant from f while
those from the correct class would become closer. Similarity-based classification
using such transformed vectors would then be more accurate. Our large margin
aggregation method is designed based on the concept of LMNN, which has been
widely popular in general computer vision as a learning-based kNN technique
but has not been adapted for fusion of subcategory results.

Specifically, our aim is to learn a linear transformation matrix F ∈ RH×H ,
so that Ff is more similar to Ff lm than Ff l

′

m, assuming the class label of f is
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l and l′ 6= l, and m = 1, ...,M indexes the M local estimates from class l or
l′ that are most similar to f . With such F , we expect

∑M
m=1 ‖F (f − f lm)‖2 <∑M

m=1 ‖F (f − f l′m)‖2, and I would then be classified correctly.
To achieve this, we define the following cost function:

ε(F ) =

J∑
j=1

M∑
m=1

‖F (rlj − rlj,m)‖2+

J∑
j=1

M∑
m=1

M∑
m′=1

[1 + ‖F (rlj − rlj,m)‖2 − ‖F (rlj − rl
′

j,m′)‖2]+

(3)

in which rlj denotes a training sample of class l from the reference set Rl, J

is the number of samples, rlj,m represents the mth closest local estimate from

the correct class l, and rl
′

j,m′ represents the m′th closest local estimate from
the wrong class l′. The first term penalizes distances between the feature and
the local estimates from the correct class. The second term [z]+ = max(0, z) is
the standard hinge loss, and penalizes cases where the feature is closer to the
local estimates from the wrong classes than those from the correct class. By
minimizing this cost function, rlj would thus be more similar to {rlj,m}m than

{rl′j,m}m by a large margin, in the transformed feature space.
To minimize Eq. (3), we reformulate this optimization goal as a semidefinite

programming problem:

Minimize

J∑
j=1

M∑
m=1

(rlj − rlj,m)TX(rlj − rlj,m) +

J∑
j=1

M∑
m=1

M∑
m′=1

ξjmm′

s.t. (rlj − rl
′

j,m′)TX(rlj − rl
′

j,m′)− (rlj − rlj,m)TX(rlj − rlj,m) ≥ 1− ξjmm′ ;

ξjmm′ ≥ 0; X � 0
(4)

Here the matrix X is positive semidefinite and X = FTF . This formulation is
mathematically similar to the optimization problem in LMNN [10]. However,
LMNN works by finding the nearest neighbors among a set of feature vectors,
while our approach involves J feature-estimate sets {rlj , {rlj,m}m, {rl

′

j,m′}m′}j
and there is no nearest-neighbor relationship among the feature vectors {rlj}.
We have thus modified the LMNN solver to derive F .

In addition, in a multi-class setting, we choose to perform the classification
in a one-versus-all manner. Specifically, by choosing samples {rlj} from a single
reference set Rl, the optimization problem in Eq. (4) is solved to derive a class-
specific transformation matrix F l, and a total of L matrices {F l : l = 1, ..., L} are
learned. To classify a test image I, with each F l, the probability of I belonging
to class l is computed as:

P (I, l) = 1−
∑M

m=1 ‖F l(f − f lm)‖2∑M
m=1(‖F l(f − f lm)‖2 + ‖F l(f − f l′m)‖2)

(5)

with l′ 6= l. The class label of I then corresponds to the F l that generates the
highest probability, i.e. label(I) = argmaxl P (I, l).
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Table 1. Confusion matrix of ILD classification.

Ground Prediction (%)
Truth NM EM GG FB MN

NM 86.7 6.1 1.6 1.1 4.5
EM 13.5 75.0 0.3 11.1 0.0
GG 7.6 0.0 80.0 7.3 5.1
FB 0.3 1.7 7.6 86.6 3.8
MN 3.1 0.0 5.3 4.4 87.1

2.3 Application to ILD Image Classification

We experimented our LMLE method on HRCT lung images from 93 ILD subjects
[1]. This database is publicly available, and annotated ground truth is provided
indicating 2D region-of-interest (ROI) and the associated ILD type. Similar to
the state-of-the-art in this problem domain [1, 8], we performed classification
on 2D image patches of 31 × 31 pixels. The dataset comprised a total of 24084
image patches of five ILD types: 6438 normal (NM), 1474 emphysema (EM), 2974
ground glass (GG), 4396 fibrosis (FB) and 7849 micronodules (MN) patches. Our
objective was thus to classify the image patches into the five ILD types.

We used the texture-intensity-gradient (TIG) feature vector [8] to represent
each image patch. The dataset was divided sequentially into four subsets of sim-
ilar numbers of subjects. For each subset, a leave-one-subject-out scheme was
applied for training and testing. 10% of this training set was then selected ran-
domly to learn the transformation matrices {F l}. We used only a subset in order
to reduce the number of conflicting constraints and speed up the learning process.
We expected that only parameters K and M needed to be tuned for different
applications. In our case, the number of subcategories was set to K = dNl/50e
based on the size of the reference set, so that on average each subcategory would
contain around 50 images. The number of top local estimates was set to M = 5,
which was found to provide the best classification among M = 1 to 7.

3 Results

Table 1 shows the confusion matrix of ILD image classification using our LMLE
method. We obtained more than 80% sensitivity for four of the five classes. EM
was the most difficult class, with 75% sensitivity. EM patches exhibited very
high visual variation, with some easily mistaken as NM while some appearing
similar to FB. The number of EM patches was also small, compared to the other
classes, hence there could be insufficient amount of reference images to represent
the varying image features and this would affect the classification accuracy.

We compared the classification recall and precision between our proposed
LMLE method and five other approaches: (1) SR – the standard SR classification
without reference sub-categorization; (2) NNLE – similar to our method but
replacing the large margin aggregation with kNN; (3) PASA – the patch adaptive
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Fig. 2. The classification recall and precision, comparing our LMLE method with SR,
NNLE, PASA [8], SVM and LF [1].

sparse approximation [8], which is the state-of-the-art in ILD classification and
is a modified SR scheme with reference adaptation; (4) SVM – the polynomial
kernel performed the best; and (5) LF – the original results using localized
features published with the ILD database [1]. The compared approaches (1)–
(4) used the same TIG feature as our LMLE method. Hard classification was
performed without tuning the balance between precision and recall.

NM EM GG FB MN

Fig. 3. Examples comparing the classification outputs between our LMLE method (top
row) and SR (bottom row) for the five ILD class. The blue lines enclose the the patches
that are accurately classified, while the red lines indicate the misclassified patches.

As shown in Fig. 2, our LMLE method outperformed the compared ap-
proaches. SR and SVM provided overall comparable results based on the same
reference sets. The performance difference between SR and NNLE demonstrates
the advantage of the reference sub-categorization. The improvement of LMLE
over NNLE indicates the benefit of the large margin aggregation. While LMLE
provided slightly lower precision for FB and MN than PASA, overall LMLE
achieved notable gain over PASA. LMLE also demonstrated considerable im-
provement over LF in four of the five ILD types.

Fig. 3 illustrates some classification results, comparing our LMLE method
with the SR approach. The selected images also help to show the visual similarity
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between different classes. Take the EM results as an example. In this case, the
EM patches look indeed very similar to normal tissue, hence they tend to be
misclassified as NM. By explicitly handling the intra-class variation and inter-
class ambiguity, our LMLE method is effective in reducing such misclassification.

4 Conclusion

In this work, we proposed a new Large Margin Local Estimate (LMLE) method
for medical image classification. The method is designed to tackle the large
intra-class variation and inter-class ambiguity with two main components: local
estimate computation with sub-categorization and classification with large mar-
gin aggregation. The proposed method has been applied to classify five types of
interstitial lung disease (ILD) patterns on a publicly available HRCT database,
and has shown consistent advantage over the compared approaches.
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