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Abstract. The bag of visual words model has been widely used in content-
based image retrieval.  However, when it is applied to medical domain, it poten-
tially has several limitations, e.g., some ordinary feature descriptors may not be 
able to capture the subtle characteristics of medical images; there is a semantic 
gap between the low-level features and the medical concepts; the emerging 
multi-modal data pose challenges on current retrieval framework and urge us to 
extend the possibilities to combine and analyze the multi-modal data. In an at-
tempt to address these issues, we proposed a bag of semantic words model for 
medical content-based retrieval in this study. We built the high-level semantic 
features from the low-level visual features by a three-step pipeline. We first ex-
tracted a set of low-level features pertaining to the disease symptoms from the 
medical images. We then translated the low-level features to symptom severity 
degrees by symptom quantization. Finally, the high-level semantic words were 
built through learning the patterns of the symptoms. The proposed model was 
evaluated using 331 multi-modal neuroimaging datasets from the ADNI data-
base. The preliminary results show that the proposed bag of semantic words 
model could extract the semantic information from medical images and outper-
formed the state-of-the-art medical content-based retrieval methods. 

1 Introduction 

Medical imaging technologies, such as Magnetic Resonance Imaging (MRI) and Posi-
tron Emission Tomography (PET), provide important insights for understanding the 
disease pathology and are essential for biomedical research and health care. However, 
the increasingly large medical collections pose great challenges in medical data man-
agement and retrieval. In addition, there is a wealth of information in medical images, 
which is important in disease characterization. Therefore, there is a need of medical 
content-based retrieval (MCBR). MCBR is at the intersection of computer vision, 
database, and medical informatics, and has been widely used in many applications, 
such as large data repository management and clinical training and education [1-3]. 
More importantly, MCBR provides the possibility of accessing a large number of pre-
diagnosed patient datasets for clinical decision support. 
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Recently, there is a clear trend of using the bag of visual words (BoVW) model for 
MCBR. Various visual words and models were proposed [4-7]. However, we believe 
the BoVW models, which are usually based on the low-level features, such as texture, 
shape, size, intensity, salient points or a combination of them, should be used with 
caution in MCBR. There are several potential limitations. Firstly, we should note that 
there is a difference between medical images and ordinary images in that the medical 
images usually have less variation. When we carry out medical image analysis, we 
often focus on images acquired on the same structure of interest, such as brain or 
lung. Many widely used low-level feature descriptors might not be suitable to distin-
guish the subtle differences between a series of highly similar medical images, as 
pointed out in [1, 2]. Secondly, there is a semantic gap between the low-level features 
and the medical concepts. For example, the patients diagnosed with same disease 
might have dramatically different appearances in medical images based on the low-
level visual features. How to associate the low-level features to high-level concepts to 
bridge the semantic gap in medical image retrieval is yet a problem to be solved. 
Some studies add semantic annotations [8, 9] to the medical images, but these meth-
ods would be less time-effective and prone to errors. Thirdly, the emerging multi-
modal medical data could benefit MCBR by providing complementary information, 
but also pose great challenges on current MCBR framework. It is very challenging to 
integrate the multi-modal data because they are different in nature. The concatenated 
features or selected features using feature selection algorithms have been used in 
many studies [10, 11], e.g., Elastic Net (EN) is one of the state-of-the-art feature se-
lection methods, which not only select the salient single features, but also preserve the 
correlations between features. However, such feature selection methods are not add-
ing information to the original features; they are actually abandoning the features that 
they believe are less important. This might lead to biased retrieval due to the loss of 
information.  

In an attempt to address these issues, in this study, we propose a bag of semantic 
words (BoSW) model for MCBR. We first extract a set of low-level features from the 
multi-modal medical imaging data and then translate them to the symptom severity 
degrees by clinical symptom quantization. Finally, we build the high-level semantic 
words by learning the patterns of the symptoms. We evaluate our method on multi-
modal neuroimaging data acquired from the Alzheimer’s Disease Neuroimaging Initi-
atives (ADNI) database. We compare our method to a set of BoVW models that are 
based on low-level features with and without feature selection [10-12]. The prelimi-
nary results show that our proposed BoSW model achieves improved performance 
compared to other methods.  

2 Bag of Semantic Words Model  

2.1 Framework Overview 

The focus of the BoSW model is to build high-level semantic features from low-level 
visual features extracted from the medical images. It is a three-step pipeline for deriv-
ing the semantic words in the BoSW framework, as shown in Fig. 1.  



 
Fig. 1. The three-step pipeline for deriving the high-level semantic words 

In the first step, we need to carefully select the low-level features that could be 
used to characterize the diseases. Good features are always related to the clinical 
symptoms. For example, the small volume of a brain functional region in MRI image 
may indicate atrophy in that region; the low intensity in brain PET image is always 
interpreted as a sign of neurodegeneration. In the second step, the low-level features 
are quantitatively associated to the symptoms. In other words, we translate the feature 
values to the degrees of symptom severity. This step requires applying the knowledge 
learnt from population-based analyses to the needs of individual patients. Finally, in 
the third step, we derive the semantic words by learning the patterns of the symptoms 
for different diseases. This step answers the important question: what are the symp-
toms of this disease? Note that the symptoms captured by different low-level features 
can be naturally integrated in this step, because the degrees of symptom severity are 
directly comparable with each other, unlike the low-level features themselves having 
different units and different ranges of values. Using this framework, the low-level 
visual features can be transformed to high-level semantic words and smoothly inte-
grated to the bag of words model.  

2.2 Low-level Visual Feature Extraction 

In this study, we extract two types of basic low-level visual features from the medical 
images in two modalities, i.e., the volume fractions from the MRI data to depict the 
brain atrophy, and the intensity values from PET data to describe the brain degenera-
tion. The volume fraction features (!!"#

!!! ! !!!"#) for each subject is defined as the 
volumes of the !!"# individual brain functional regions normalized by the volume of 
the entire brain mask, where ! indicates the !!! subject. The region-wise intensity val-
ues (!!"#

!!! ! !!!"#) for each subject are extracted in the same fashion. Note that !!"#
!!!  

and !!"#
!!!  have the same dimension, because the PET and MRI are registered and seg-

mented using the same brain atlas. More details on MRI and PET data acquisition and 
pre-processing are given in Section 3.1.  

2.3 Clinical Symptom Quantization 

In this step, we translate the visual feature values into the degrees of the clinical 
symptom severity. The underlying assumption for symptom quantization is that the 
feature values for normal subjects should be randomly distributed a normal range; the 
extreme feature values might indicate the anomalies.  

We used the visual features of a group of normal controls to estimate the normal 
distribution of the features. The probability distribution function (!!!!! !!)) for each 



feature element, 𝑣(𝑗), is assumed to be a Gaussian, and its mean (𝜇!) and variance (𝜎!) 
can be estimated from the same feature elements of all normal controls, where 𝑗 indi-
cates the 𝑗!! lower-level visual feature. We then quantize the value of 𝑗!! feature for 
the 𝑖!! subject using the negative log probability as in Eq. (1): 

𝑢(!)(𝑗) = −ln  (𝑃 𝑣(!)(𝑗)|𝜇! ,𝜎𝑗 ) (1) 

We derive the 𝑢!(𝑗) for all the feature elements and all the subjects. The new fea-
ture, 𝑢(!)(𝑗), can be interpreted as the possibility of an anomaly. Larger value of 𝑢(!)(𝑗) 
means higher degree of symptom severity.  

Originally, the low-level features are not directly comparable to each other, be-
cause they have different units and varying ranges of values. After symptom quantiza-
tion, the feature values are translated to the degrees of symptom severity, which could 
be naturally compared to each other and combined together.  

2.4 Semantic Word Learning  

Given the transformed features associated with the symptoms, we then investigate the 
symptom patterns to derive the high-level semantic words. Usually, a single pattern is 
derived for each disease showing the dominant symptoms, as in many feature selec-
tion methods. However, we notice that even for the same disease, there might be non-
unique symptom patterns. For example, Alzheimer’s disease (AD) at early stage 
might cause temporal lobe atrophy, but it could cause frontal and whole brain atrophy 
at late stage. Based on this fact, we employ the sparse auto-encoder [13] for learning 
the semantic words, taking advantage of its capability to derive multiple patterns sim-
ultaneously. A sparse auto-encoder is a special case of the neural network with three 
layers, the input layer, hidden layer and output layer, as shown in Fig. 2. Different 
from a typical neural network, the goal of a sparse auto-encoder is to learn the internal 
structures of the input features instead of predicting the classes of them.  The neurons 
are constrained to output the same piece of information as in the input features. In this 
study this is equivalent to optimally identifying the most possible combinations of 
symptoms of the disease.  

The weights of the neurons, 𝑊, could be estimated by energy minimization of three 
types of cost, i.e., the Error Cost, Weight Cost and Sparsity Cost, as in Eq. (2): 

arg  min
!

1
𝑀

1
2
𝑢(!) − 𝑢(!) !

!

!!!

!""#"  !"#$

+
𝜆
2

𝑊(𝑘)!!
!!×!!

!

!

!!!

!"#$!!  !"#$

+ 𝛽 KL(𝜌 𝜌!)
!

!!!

!"#$%&'(  !"#$

 
(2) 

where 𝑀 is the number of subjects, 𝑢(!) is the estimated output of 𝑢(!); 𝑁! and 𝑁! refer 
to the numbers of input neurons and hidden neurons, respectively; 𝑊! and 𝑊! are 
𝑁!×𝑁! and 𝑁!×𝑁! matrices representing the weights on the neurons in conjunctive 
layers; 𝜌! is the average activation of ℎ!! hidden neuron; KL(∗ ∗) is the Kullback-
Leibler divergence between two variables. We could use 𝜆, 𝛽 and 𝜌 to control the rati-
os of the three cost functions. Each neuron in the hidden layer shows a combination of 
signal received from the input neurons with the maximum activation value. In other 
words, the hidden neurons show the patterns of the most possible symptoms for the 



disease. Note that sparse auto-encoder provides us the flexibility to define arbitrary 
number of hidden neurons (!!) to capture the non-unique symptom patterns. 

In this study, we divide the subjects into different groups according to their diag-
nosed diseases and investigate each group individually to identify the disease-specific 
symptoms. Fig. 2 shows the architecture of the sparse auto-encoder for the three 
groups of subjects. More details of the subject information are given in Section 3.1.  

 
Fig. 2. Architecture of sparse auto-encoder used in this study, designed for different diseases 

We use the hidden neurons derived from all these groups as the final collection of 
semantic words. The semantic features for each subject are derived by calculating the 
activation values to each semantic word, given his/her symptom severity features. In 
this study, we use the sigmoid function for calculating the activation values. The low-
level features for each subject are then transformed to a set of activation values to the 
semantic words, which we interpret as the ‘term frequencies’; therefore, the high-level 
semantic features can be smoothly integrated to the typical bag of word model for 
ordinary information retrieval systems. 

3 Experiments  

3.1 Data Acquisition and Pre-processing 

The medical imaging data used in this study were obtained from the ADNI database 
[14]. We randomly selected 331 subjects from the ADNI baseline cohort, including 
77 cognitive normal (CN) subjects, 169 Mild Cognitive Impairment (MCI) and 85 
Alzheimer’s Disease (AD). For each subject, we acquired a T1-weighted volume on a 
1.5 Tesla MR scanner and a PET volume with Fluorodeoxyglucose (18F) as the tracer. 
All these 3D MRI and PET data were converted to the ADNI format following the 
ADNI image correction protocols [14, 15]. The PET images were linearly registered 
to the corresponding MRI image using FSL FLIRT [16]. We further nonlinearly regis-
tered the MRI images to the ICBM_152 template [17], which parcellated the brain 
into 83 brain functional regions, using the Image Registration Toolkit (IRTK) [18]. 
We then applied the IRTK registration coefficients to warp the linearly registered 
PET images into the ICBM_152 template. All of the brain functional regions in regis-
tered PET and MRI were labeled in the template space using the multi-atlas propaga-
tion with enhanced registration (MAPER) approach [19].  



3.2 Performance Evaluation 

Our proposed BoSW model was validated by leave-one-out cross-validation on the 
entire dataset using the query by example paradigm. The similarity between any two 
feature-vectors was calculated using the normalized Euclidean distance. We evaluated 
its performance using the revised version of the mean average precision (MAP), same 
as in [11].  

The number of subjects in different groups was based on the subjects’ diagnoses 
( 𝑀𝐶𝑁,𝑀𝑀𝐶𝐼,𝑀𝐴𝐷 = [77, 169, 85]). The number of regions was determined by the 
ICBM_152 template (𝑁!"# = 83), thus the number of input neurons was equal to the 
sum of both PET and MRI features (𝑁! = 166). We assumed the symptom pattern 
associated to each disease might not be unique, so we set a number of hidden neurons 
to capture the multiple patterns simultaneously (𝑁! = 5) for each group of subjects; 
therefore there were 15 hidden neurons in total for all three groups. Other parameters 
of sparse auto-encoder were set by pilot experiments ([𝜆, 𝛽, 𝜌] = [0.0001, 3, 0.01]). 
We were not dedicated to tune the parameters to achieve the best performance in this 
study. This preliminary experiment was simply designed to demonstrate the superiori-
ty of the BoSW model. 

We compared the diagnosis performance of the proposed BoSW model to a set of 
BoVW models that were based on the PET features [12], MRI features [11], and con-
catenated PET + MRI features with and without feature selection by Elastic Net [10]. 
Same performance evaluation methods were used for all these models.  

3.3 Results  

Fig. 3. The back-projection of the semantic words onto the brain, image generated using 3D Slicer [20] 

The semantic words derived by our BoSW pipeline are shown in Fig. 3. Each seman-
tic word is derived from a hidden neuron using the sparse auto-encoder as discussed 



in Section 2.4. A color table is used to illustrate the symptom severity degrees com-
bining both the MRI and PET components. It is easy to interpret the semantic words 
using simple symptom descriptions. For example, the last neuron derived for AD 
shows that an AD patient may have strong correlations between the temporal and 
parietal lobes with both atrophy and hypo-metabolism symptoms.  

Table 1. The mean average precision (%) of the proposed BoSW model compared to the state-of-the-art 
BoVW models based on low-level visual features 

Diagnosis 
Features (Dimension) CN MCI AD Overall 

PET Features 
(83) 50.4 75.3 48.2 62.6 

MRI Features 
(83) 59.2 69.2 53.8 62.4 

Concatenated Features  
(166) 55.0 72.5 51.3 62.9 

EN Selected Features  
(23) 66.9 69.7 58.5 66.2 

The Proposed Semantic Words  
(15) 58.2 76.1 54.5 66.4 

Table 1 shows the performance comparison of the proposed BoSW model and a set 
of BoVW models that are based on low-level visual features. The results correspond 
well to the existing knowledge of AD and MCI. PET features are more sensitive to 
early functional changes on MCI, so they have better retrieval performance for MCI. 
MRI features are more robust to structural changes that are mainly found in AD. The 
concatenated PET + MRI features could not taking the advantages of multi-modal 
information, and show a moderate performance compared to PET and MRI features. 
The selected features using Elastic Net yield best results for NC and AD at a sacrifice 
of compromised performance for MCI. This indicates that feature selection methods 
might lead to biased retrieval due to loss of information. The proposed BoSW model 
on the other hand, preserves all the goodness of individual features and achieved the 
best overall performance and best performance for MCI. The advantageous multi-
pattern nature of sparse auto-encoder makes the BoSW model more robust than the 
feature selection algorithms. Note that our BoSW model uses as few as 15 words, and 
the performance can be further improved through tuning the parameters or using dif-
ferent low-level features. More importantly, our BoSW model could make sense of 
the low-level features and attempt to bridge the semantic gap by translating them to 
the high-level semantic concepts.  

4 Conclusions 

In this study, a novel bag of semantic words (BoSW) model and its application in 
MCBR were presented. Our BoSW model used much fewer features and could cap-
ture the high-level semantic words highly correlated to disease symptoms. Evaluated 
using a public multi-modal neuroimaging dataset, our method outperformed other 
state-of-the-art MCBR methods. 



References 

1. Muller, H., Michoux, N., Bandon, D., Geissbuhler, A.: A review of content-based image re-
trieval systems in medical applications – clinical benefits and future directions. International 
Journal of Medical Informatics 73, 1-23. (2004)  

2. Cai, W., Kim, J, Feng, D.: Chaper 4 – content-based medical image retrieval. In: Feng, D. (eds.) 
Biomedical Information Technology, pp. 83-113. Elsevier (2008) 

3. Long, L.R., Antani, S., Deserno, T.M., Thoma, G.R.: Content based image retrieval in medi-
cine. Int. J. Healthc. Inf. Syst. Inform. 4(1), 1-16. (2009) 

4. Liu, S., Cai, W., Wen, L., et al.: Localized functional neuroimaging retrieval using 3D discrete 
curvelet transform. In: ISBI 2011, pp. 1877-1880. IEEE (2011) 

5. Burner, A., Donner, R., Mayerhoefer, M., et al.: Texture bags: anomaly retrieval in the medical 
images based on local 3D-texture similarity. In: Muller, H., Greenspan, H., Syeda-Mahmood, 
T. (eds.) MCBR-CDS 2011. LNCS, vol. 7075, pp. 116-127. Springer, Heidelberg (2011) 

6. Foncubieta-Rodriguez, A., Depeursinge, A., Muller, H.: Using multiscale visual words for lung 
texture classification and retrieval. In: MCBR-CDS 2011. LNCS, vol. 7075, pp. 69-79 (2011) 

7. Haas, S., Donner, R., Burner, A., Holzer, M., Langs, G.: Superpixel-based interest points for 
effective bags of visual words medical image retrieval. In: MCBR-CDS 2011. LNCS, vol. 
7075, pp. 58-68. Springer, Heidelberg (2011) 

8. Moller, M., Sintek, M.:  A generic frameword for semantic medical image retrieval. In: KAMC 
2007, vol. 253, no. 2. CEUR (2007) 

9. Seifert, S., Thoma, M., et al.: Combined semantic and similarity search in medical image 
databases. In: Boonn, W.W., Liu, B.J. (eds.) SPIE-MI 2011, vol.7967, no.2. SPIE (2011) 

10. Shen, L., Kim, S., Qi, Y., Inlow, M., Swaminathan. S., Nho, K., Wan, J., et al.: Identifying 
neuroimaging and proteomic biomarkers for MCI and AD via the elastic net. In: Liu, T., Shen, 
D., et al. (eds.) MBIA 2011. LNCS, vol. 7012, pp. 27-34. Springer, Heidelberg (2011). 

11. Liu, S., Cai, W., Wen, L., Feng, D.: Multi-channel brain atrophy analysis in neuroimaging 
retrieval. In: ISBI 2013, pp. 206-209. IEEE (2013)  

12. Cai, W., Liu, S., Wen, L., et al.: 3D neurological image retrieval with localized pathology 
centric CMRGlc patterns. In: ICIP 2010, pp. 3201-3204. IEEE (2010) 

13. Raina, R., Battle, A., Lee, H., et al.: Self-taught learning: transfer learning from unlabeled data. 
In: The 24th International Conference on Machine Learning, pp. 759-766. ACM (2007) 

14. Jack, C.R., Bernstein, M.A., Fox, N.C., Thompson, P., Alexander, G., et al.: The Alzheimer’s 
disease neuroimaging initiative (ADNI): MRI methods. JMRI 27(4), 685–691 (2008) 

15. Jagust, W.J., Bandy, D., Chen, K., Foster, N.L., et al.: The Alzheimer’s disease neuroimaging 
initiative positron emission tomography core. Alzheimer’s & Dementia 6(3), 221-229 (2010) 

16. Jenkinson, M., Bannister, P., et al.: Improved optimization for the robust and accurate linear 
registration and motion correction of brain images. NeuroImage 17(2), 825-841 (2002) 

17. Mazziotta, J., Toga, A., Evans, A., Fox, P., et al.: A probabilistic atlas and reference system for 
the human brain: international consortium for brain mapping. Phil. Trans. Royal Soc. B Biol. 
Sci. 356(1412), 1293-1322 (2001) 

18. Schnabel, J.A., Rueckert, D., Quist, M., et al.: A generic framework for non-rigid registration 
based on non-uniform multi-level free-form deformations. In Niessen, W.J., Viergever, M.A. 
(eds.) MICCAI 2001. LNCS, vol. 2208, pp. 573-581. Springer, Heidelberg (2001) 

19. Heckemann, R.A., Keihaninejad, S., Aljabar, P., Gray, K.R., et al.: Automatic morphometry in 
Alzheimer’s disease and mild cognitive impairment. Neuroimage 56(4), 2024-2037 (2011) 

20. Pieper, S., et al.: The NA-MIC kit: ITK, VTK, pipelines, grids and 3D Slicer as an open plat-
form for the medical image computing community. In: ISBI 2006, pp. 698–701. IEEE (2006) 




