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Abstract. The Allen Brain Atlas (ABA) database provides comprehen-
sive 3D atlas of gene expression in the adult mouse brain for studying the
spatial expression patterns in the mammalian central nervous system. It
is computationally challenging to construct the accurate anatomical and
genetic networks using the ABA 4D data. In this paper, we propose a
novel sparse simplex model to accurately construct the brain anatomical
and genetic networks, which are important to reveal the brain spatial
expression patterns. Our new approach addresses the shift-invariant and
parameter tuning problems, which are notorious in the existing network
analysis methods, such that the proposed model is more suitable for solv-
ing practical biomedical problems. We validate our new model using the
4D ABA data, and the network construction results show the superior
performance of the proposed sparse simplex model.

1 Introduction

In recent research, the large-scale screenings for gene expression profiles across all
different brain regions have been done by the Allen Institute for Brain Science,
known as Allen Brain Atlas (ABA) project [1]. ABA provides spatially mapped
large-scale gene expression database and enables quantitative comparison of data
measurements across genes, anatomy, and phenotype. Detection of gene-anatomy
association in brain structure is crucial for understanding brain function based
on the molecular and genetic/genomic information. Particularly in the mouse
or human brain where there are over thousands of genes expressed, systematic
and comprehensive quantification of the expression densities in the whole three-
dimensional (3D) anatomical context is critical.

The ABA database provides cellular resolution 3D expression patterns for
both mouse and human (ongoing project). The image data are generated by
in situ hybridization using gene-specific probes, followed by slide scanning and
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3D image registration to the Allen Reference Atlas (ARA) [2] and expression
segmentation [3]. The resulted mouse brain 4D expression data are in a set of
spatially aligned 3D volumes of size 67× 41× 58. The genes’ values expressed in
each voxel of the mouse brain are recorded.

The ABA contains information about the spatial distribution of genes within
the human and mouse brain. Efficient and effective analysis of these high through-
put data can shed light on the global function of mammalian central nervous
system [4] and provide important information for understanding the connections
of human brain anatomy, genome, and transcriptome. However, most previous
research works are limited to retrieve correlation values between the spatial pat-
terns of genes [5], or cluster the brain regions into co-expressed groups [6].

Network analysis provides a productive approach to analyze the high through-
put biomedical and biological data. Transforming the data into a network frame-
work offers distinct advantages for directly relating specific biomedical and bio-
logical interactions or outcome states with the network properties and dynamics.
Thus, it is desired to model and analyze the spatial gene expression data of hu-
man brain in ABA in network format. Existing approaches to construct biomed-
ical and biological networks usually have three deficiencies: (1) shift variant, i.e.
when the data are shifted with a value, the network construction result will be
totally different; (2) tedious parameter tuning is needed and not suitable for the
practical applications; (3) the network edge weight has no probability interpre-
tation to help the analysis. In this paper, to tackle these problems, we propose a
novel sparse simplex learning model and applied it to ABA mouse brain data to
create both anatomical and transcriptomic networks, which provide important
insights into the global structure of the anatomy and transcriptome.

2 Related Work

The ABA brain microarray data provide the great opportunity to model the
neuroanatomical and transcriptomic networks, where each vertex represents a
spatial location or a gene and the edges between vertices encode the correla-
tions between locations and genes. In recent related studies, the weighted gene
co-expression network analysis (WGCNA) [7] based computational tools were
mainly used to construct the co-expression network. More recently, Ji [8] used
an approximate formulation for Gaussian graphical modeling [9] to model the
mouse brain networks and showed more efficient and stable construction results.
Given the input data X = [x1, · · · ,xn] ∈ ℜd×n, this approximation model cal-
culates the edge weight matrix W ∈ ℜn×n (all values on the diagonal are “0”s)
by solving a series of sparsity regularized regression problems. In this paper, we
write matrices as capital letters and vectors as boldface lowercase letters. Given
a matrix W = [wij ], its i-th row and j-th column are denoted as wi and wj ,
respectively.

In [8], the weights of edges from vertex xi’s neighboring vertices to xi are
learned by solving the standard sparse representation problem:

min
αi

||xi −X−iαi||2 + λ||αi||1, (1)



where X−i = [x1, · · · ,xi−1,xi+1, · · · ,xn] is the data matrix obtained from X
by removing the i-th data point, αi ∈ ℜ(n−1)×1 is a weight vector from wi

by removing the i-th weight, which is zero. The network links are constructed
by applying the thresholding value 0.5 to the edge weights. The above model
constructs the network/graph using Lasso for variables selection [9]. However,
this approach has three key deficiencies: 1) This method is not shift invariant,
i.e., if data are shifted with an arbitrary value, such as xi = xi+ t1, the network
construction result will be totally different. 2) The parameter λ has to be tuned
to get good results. Although [8] provided a strategy to learn this parameter,
the strategy also depends on the link thresholding value. Thus, the network
construction results are not robust as expected. 3) The edge weights cannot be
interpreted as probabilities. To solve these deficiencies, we propose a new sparse
simplex learning model to construct brain networks with non-parameter tuning,
shift invariant, and probability interpretation advantages.

3 Methodology

3.1 Sparse Simplex Learning Model

Sparse learning models have been actively applied to solve problems in compu-
tational neuroscience [10–14]. To effectively construct the brain networks, the
sparse representation model can be utilized as in [8]. When we build the neu-
roanatomical and transcriptomic networks, we hope the edge weight has the
probability meaning, which can directly tell us the link strength between two
nodes. Thus, we add two constraints on the sparse representation model: αi ≥ 0
and αT

i 1 = 1, where 1 ∈ ℜ(n−1)×1 is a vector with all “1” as elements. The new
objective will solve:

min
αi

∥X−iαi − xi∥22 + λ∥αi∥1 , s.t. αi ≥ 0, αT
i 1 = 1 . (2)

After imposing these two constraints, the solutions αi will have the probability
interpretations. The αi(j) is the edge weight between nodes i and j. Because∑

j αi(j) = αT
i 1 = 1, αi(j) can be interpreted as the probability to have an

edge between nodes i and j.
In the network construction, we hope the learning model is shift-invariant,

such that the network constructions have small changes when the data have
an arbitrary shift value. The shift-invariant property is important for practical
biomedical applications, because the data collection processes are often effected
by instruments and environment factors and the collected data may include a
shifted value caused by these factors. Fortunately, after imposing the above two
constraints, the new sparse learning model becomes shift-invariant.

When the data are shifted by a constant t, i.e., xk = xk + t1 for all k =
1, · · · , n, the computed similarities between the pairs of nodes will be changed.
The objective function becomes:∥∥(X−i + t11T )αi − (xi + t1)

∥∥2
2
+ λ∥αi∥1 . (3)



Because αT
i 1 = 1, the above objective can be written as:

∥X−iαi − xi∥22 + λ∥αi∥1 , (4)

which is the original one. Thus, the new objective in (2) is shift-invariant.
More important, the constraints in problem (2) make the second regulariza-

tion term as a constant. Thus, the problem (2) becomes

min
αi

∥X−iαi − xi∥22 , s.t. αi ≥ 0, αT
i 1 = 1 . (5)

Thus, the new model has no parameter, such that it is suitable for biomedical
and biological applications, in which we usually lack information/data to tune
the parameter.

Because the constraints in problem (5) are the simplex formulation, we call
the new method as the sparse simplex learning model. Note that the above
constraints (ℓ1 ball constraints) indeed introduce sparse solution αi.

The ABA 4D data are large-scale with high-dimensionality. Thus, we need to
derive the efficient optimization algorithm to solve the new objective in Eq. (5).
It is more appropriate to apply the first-order methods, i.e., use function values
and their (sub)gradient at each iteration. There are many first-order methods,
including gradient descent, subgradient descent, and Nesterov’s optimal method
[16]. In this paper, we use the accelerated projected gradient method to optimize
Eq. (5).

3.2 Optimization Algorithm

When we use the accelerated projected gradient method to solve this problem,
the critical step of the projected gradient method is to solve the following prox-
imal problem:

min
αi

1

2
∥αi − v∥22 , s.t αi ≥ 0,αT1 = 1 . (6)

We write the Lagrangian function of problem (6) as:

1

2
∥αi − v∥22 − γ(αT

i 1− 1)− λTαi, (7)

where γ is a Lagrangian multiplier and λ is a Lagrangian multiplier vector, both
of which are to be determined. Suppose the optimal solution to the proximal
problem (6) is α∗, the associate Lagrangian coefficients are γ∗ and λ∗. Then
according to the KKT condition [17], we have the following equations:

∀j, α∗
ij − vj − γ∗ − λ∗

j = 0 (8)

∀j, α∗
ij ≥ 0 (9)

∀j, λ∗
j ≥ 0 (10)

∀j, α∗
ijλ

∗
j = 0 (11)



where α∗
ij is the j-th scalar element of vector α∗

i . Eq. (8) can be written as

α∗
ij − vj − γ∗1 − λ∗

j = 0. According to the constraint 1Tα∗
i = 1, we have γ∗ =

1−1Tv−1Tλ∗

n . Thus, α∗ = (v − 11T

n v + 1
n1− 1Tλ∗

n 1) + λ∗.

Denoting λ̄∗ = 1Tλ∗

n and u = v− 11T

n v+ 1
n1, we can write α∗ = u+λ∗−λ̄∗1.

Thus, ∀j we have:
α∗
ij = uj + λ∗

j − λ̄∗. (12)

According to Eqs. (9)-(12) we know uj + λ∗
j − λ̄∗ = (uj − λ̄∗)+, here x+ =

max(x, 0). Then we have
α∗
j = (uj − λ̄∗)+. (13)

Therefore, we can obtain the optimal solution α∗ if we know λ̄∗.
We write Eq. (12) as λ∗

j = α∗
ij + λ̄∗ − uj . Similarly, according to Eqs.(9)-

(11), we know λ∗
j = (λ̄∗ − uj)+. Since v is a n− 1-dimensional vector, we have

λ̄∗ = 1
n−1

n−1∑
j=1

(λ̄∗ − uj)+. Defining a function as

f(λ̄) =
1

n− 1

n−1∑
i=1

(λ̄− uj)+ − λ̄, (14)

such that f(λ̄∗) = 0 and we can solve the root finding problem with Newton
method to obtain λ̄∗.

The convergence rate of our algorithm is O( 1
t2 ), where t is the number of

iterations. The detailed proof can be found at [15, 16].

4 Experiments and Discussions

4.1 Experimental Results on ABA Data

In our experiment, we use the ABA cellular resolution 3D expression patterns
in the male, 56-day-old C57BL mouse brain. The 4D spatial gene data are a 4D
tensor 2980 × 67 × 41 × 58, in which the first index corresponds to genes, and
the other three indices represent the rostral-caudal, dorsal-ventral and left-right
spatial directions, respectively. The newest database provides 2980 genes which
are slightly different to the data used in [8].

When we create the genetic network, each node is one gene of 2980 genes.
In [8], the tensor factorization method was used to reduce the dimensionality.
However, this is an improper process. Although the voxels on the boundary of
brain have no gene values, the tensor factorization includes the values of these
voxels into calculation. We used the PCA method to reduce the dimensionality.
Although the number of voxels is very large, the number of genes is not large.
The PCA calculation is still affordable. For each gene, we reduce its 3D tensor
data to 25 × 15 × 20 and then concatenate its all values into a feature vector.
The resulted 7500×2980 data matrix is used as input of sparse simplex learning
model to construct the genetic network.



(a) Slice 20 on rostral-caudal direction (b) Slice 29 on left-right direction

(c) Slice 33 on rostral-caudal direction

Fig. 1. We select and visualize the center slices of three directions of the 3D neu-
roanatomical network. (a) The 20-th slice on the dorsal-ventral direction. (b) The 29-
th slice on the left-right direction. (c) The 33-rd slice on the rostral-caudal direction.
The region with the largest number of connections corresponds to the brain structure
dentate gyrus.

When we build the anatomical network, we directly use the 2980×67×41×58
tensor data. We have total 67× 41× 58 nodes in brain spatial structure and the
gene values are features. The sparse simplex model is performed to construct the
neuroanatomical network. Because the network is 3D, we cannot visualize the
whole 3D network. Thus, in Figure 1, we select three slices of brain data (center
slices on three directions) and plot the networks on them. Figure 1(a) shows
the 20-th slice on the dorsal-ventral direction. Figure 1(b) plots the 29-th slice
on the left-right direction. Figure 1(c) visualizes the 33-rd slice on the rostral-
caudal direction. The region with the largest number of connections corresponds
to the brain structure dentate gyrus. We don’t plot the genetic network here,
because there is no spatial structure in genes. The genetic network cannot show
meaningful visualization.



4.2 Model Evaluation Using Clustering Tasks

In above experimental results, we showed that the proposed sparse simplex model
can efficiently construct both genetic and neuroanatomical networks. Because
there is no ground-truth results for network constructions, we cannot directly
compare the performance of our sparse simplex method. Thus, we use the clus-
tering task results to compare our sparse simplex model to other graph construc-
tion methods. We use the sparse representation method [8] to construct graph
and then perform Normalized Cut (NCut) and Self-Tuning Spectral Clustering
(STSC) methods. After that, we build the graph using the proposed model and
then perform the Normalized Cut (SSM+NCut). The clustering accuracy on six
public computer vision benchmark image datasets are shown in Table 1. We also
show the clustering results of K-means and NMF as baseline results. Although
these data are not biomedical image data, we only use them for validation pur-
pose because they have ground truth labels. In all results, our new sparse simplex
model shows the promising graph/network construction results.

Datasets K-means NMF NCut STSC SSM+NCut

AR 0.133 0.143 0.158 0.130 0.324

AT&T 0.664 0.678 0.698 0.685 0.763

JAFFE 0.789 0.774 0.795 0.813 0.902

MNIST 0.641 0.636 0.647 0.693 0.796

PIE 0.229 0.241 0.234 0.186 0.325

UMIST 0.475 0.457 0.443 0.394 0.514
Table 1. Clustering accuracy using different graph construction methods.

5 Conclusion

In this paper, we propose a novel sparse simplex learning model to construct
the genetic and neuroanatomical networks using ABA 4D spatial gene patterns.
Compared to the existing methods, the new model has three advantages: (1) it
is shift-invariant such that the noise in data collection won’t dramatically effect
the network construction; (2) it doesn’t require the parameter tuning, thus it is
suitable for practical biomedical and biological applications; (3) it has probability
interpretations on the resulted network weights, which can help the further data
analysis. We validate the proposed model using the ABA mouse brain data and
construct both genetic and anatomical networks. Our new model can also be
applied to other biomedical network construction and analysis problems.

References

1. Lein, E.S.: Genome-wide atlas of gene expression in the adult mouse brain. Nature
445, 168–176 (2007)



2. Dong, H.W.: The Allen Reference Atlas: A Digital Color Brain Atlas of the
C57BL/6J Male Mouse (2009)

3. Ng, L., Pathak, S.D., Kuan, C., Lau, C., Dong, H., Sodt, A., Dang, C., Avants,
B., Yushkevich, P., Gee, J.C., Haynor, D., Lein, E., Jones, A., Hawrylycz, M.: Neu-
roinformatics for genome-wide 3-D gene expression mapping in the mouse brain.
IEEE/ACM Trans. Comput. Biol. Bioinformatics 4, 382–393 (2007)

4. Jones, A.R., Overly, C.C., Sunkin, S.M.: The Allen Brain Atlas: 5 years and beyond.
Nat. Rev. Neurosci. 10, 821–828 (2009)

5. Ng, L., et al.: An anatomic gene expression atlas of the adult mouse brain. Nat
Neurosci 12, 356–362 (2009)

6. Bohland, J.W., Bokil, H., Pathak, S.D., Lee, C.K., Ng, L., Lau, C., Kuan, C.,
Hawrylycz, M., Mitra, P.P.: Clustering of spatial gene expression patterns in the
mouse brain and comparison with classical neuroanatomy. Methods 50, 105–112
(2010)

7. Zhang, B., Horvath, S.: A General Framework for Weighted Gene Co-Expression
Network Analysis. Statistical Applications in Genetics and Molecular Biology 4(1),
17 (2005)

8. Ji, S.W.: Computational network analysis of the anatomical and genetic organiza-
tions in the mouse brain. Bioinformatics 27(23), 3293–3299 (2011)

9. Meinshausen, N., Buhlmann, P.: High-dimensional graphs and variable selection
with the Lasso. The Annals of Statistics 34(3), 1436–1462 (2006)

10. Wang, H., Nie, F.P., Huang, H., Risacher, S., Saykin, A.J., and Shen, L.: Identifying
adsensitive and cognition-relevant imaging biomarkers via joint classification and
regression. In: MICCAI, pp. 115–123 (2011)

11. Wang, H., Nie, F.P., Huang, H., Kim, S., Nho, K., Risacher, S., Saykin, A.J.,
Shen, L.: Identifying quantitative trait loci via group-sparse multitask regression
and feature selection: an imaging genetics study of the adni cohort. Bioinformatics
28(2), 229–237 (2012)

12. Wang, H., Nie, F.P., Huang, H., Risacher, S., Saykin, A.J., and Shen, L.: Iden-
tifying disease sensitive and quantitative trait-relevant biomarkers from multidi-
mensional heterogeneous imaging genetics data via sparse multimodal multitask
learning. Bioinformatics 28(12), i127–i136 (2012)

13. Wang, H., Nie, F.P., Huang, H., Yan, J., Kim, S., Nho, K., Risacher, S., Saykin,
A.J., Shen, L.: From phenotype to genotype: an association study of longitudinal
phenotypic markers to alzheimer’s disease relevant SNPs. Bioinformatics 28(18),
i619–i625 (2012)

14. Wang, H., Nie, F.P., Huang, H., Yan, J., Kim, S., Risacher, S., Saykin, A.J., Shen,
L.: High-order multi-task feature learning to identify longitudinal phenotypic mark-
ers for alzheimer’s disease progression prediction. In: NIPS, pp. 1286–1294 (2012)

15. Nesterov, Y.: Method for solving a convex programming problem with convergence
rate O(1/k2). Soviet Math Dokl 1983(2), 372–376 (1983)

16. Nesterov, Y.: Gradient methods for minimizing composite objective function (2007)
17. Boyd, S., Vandenberghe, L.: Convex Optimization, Cambridge University Press

(2004)


