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Abstract. Automatic detection of lung tumors and abnormal lymph
nodes are useful in assisting lung cancer staging. This paper presents a
novel detection method, by first identifying all abnormalities, then differ-
entiating between lung tumors and abnormal lymph nodes based on their
degree of overlap with the lung field and mediastinum. Regression-based
appearance model and graph-based structure labeling are designed to es-
timate the actual lung field and mediastinum from the pathology-affected
thoracic images adaptively. The proposed method is simple, effective and
generalizable, and can be potentially applicable to other medical imag-
ing domains as well. Promising results are demonstrated based on our
evaluations on clinical PET-CT data sets from lung cancer patients.

1 Introduction

Lung cancer is currently the leading cause of cancer deaths; and staging plays
a critical role in defining the prognosis and the best treatment approaches.
Imaging-based staging with positron emission tomography – computed tomog-
raphy (PET-CT) is now widely accepted as the best non-invasive technique.
However, image interpretation in clinical routines requires considerable experi-
ence and can be subject to high intra- and inter-observer differences.

Since the existence of primary lung tumors and disease spread in regional
lymph nodes are the most important factors for classifying the stage of lung
cancer, our aim of this study is to develop a computerized method to detect
the lung tumors and abnormal lymph nodes from PET-CT thoracic images au-
tomatically. PET highlights abnormal areas with high uptake values (Fig. 1b),
but it is difficult to identify the type of the abnormality from PET without
well-depicted anatomical structures. While such information can be viewed from
the integrated CT (Fig. 1a), it is still quite challenging to differentiate lung tu-
mors and abnormal lymph nodes, especially for complex cases with lung tumors
invading into the mediastinum or lymph nodes abutting the lung field.

The prior works mainly focus on detecting either lung tumors [1, 2] or lymph
nodes [3, 4] only. They avoid handling the influence from the other type of abnor-
mality by assuming its non-existence [2, 4] or with user-defined region of inter-
est [1, 3]. For simultaneous detection of both lung tumors and abnormal lymph
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nodes, a multi-level inference method has recently been proposed [5]. While the
proposed local-, spatial- and object-level features are demonstrated effective for
the detection, the feature design appears to be based on empirical study, and
hence might be limited to the available scenarios in the data sets and difficult
to generalize to a larger variation of cases.

In this work, we propose a new and intuitive idea to the detection problem
– after attempting to detect all abnormalities, if we can identify the actual lung
field (tumors inclusive), then we can differentiate lung tumors and abnormal
lymph nodes based on the degree of overlap between the detected abnormality
and the lung field. The main problem is thus how to estimate the pathology-
affected lung field. Limited studies exist in this area, and are mostly based on
statistical shape models [6, 7], with time-consuming registration [6] or complex
landmark detections [7]. Since our problem does not require a very precise lung
segmentation, but only a fair estimation of the overlap, we design a simpler
yet effective atlas-based approach. Our design can be considered similar to [8],
which unlike local-level computation [9], obtains brain segmentation mask by
minimizing the weighted difference for the whole image with a regression-based
approach. However, its direct derivation of segmentation from multiple weak
segmenters might impose a stringent requirement on the weight learning, which
would be difficult to optimize in our problem domain due to the large variety of
thoracic patterns caused by abnormalities. This thus motivates us to opt for an
indirect approach, with intermediate multi-atlas modeling of the feature space
and a further classification for final labeling.

Our main contributions of this work are five-fold: (i) we approach the detec-
tion problem with a more intuitive and generalizable method, based on estima-
tion of the actual lung field and mediastinum; (ii) the estimation is adaptive to
each image, by weighted approximation of appearance model and then structure
labeling; (iii) we design a regression approach for the appearance model, with en-
hanced local weights, supervised labeling information, and sparse regularization;
(iv) we construct a customized conditional random field (CRF) [10] for globally-
optimal structure labeling, encoding global and pairwise contrast information;
and (v) simple features are used for structure estimation and abnormality clas-
sification, to keep the method adaptable for other imaging domains.

2 Proposed Method

2.1 Initial Abnormality Detection

The PET-CT thoracic images are first preprocessed to remove the background
and soft tissues outside of the lung and mediastinum with morphological opera-
tions. All images are then aligned based on the carina of tracheae, and rescaled
to the same size [4]. Next, the abnormalities are detected by classification of
lung field (L), mediastinum (M) or abnormalities (O) (Fig. 1c), based on PET
uptake values and CT densities. This classification method is the same as the
local-level modeling described in [5], and lung tumors and lymph nodes are not
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Fig. 1. Method illustration. (a) An axial CT slice (after preprocessing). (b) The co-
registered PET slice, where the dark region indicates a lung tumor. (c) Output of the
initial abnormality detection, showing the lung field, mediastinum and abnormality
with increasing grayscale values. (d) The appearance model generated with regression,
approximating the CT intensities if without the lung tumor. (e) Output of the graph-
based structure labeling for lung field and medaistinum. (f) The detection output after
tumor/lymph node classification, with tumor highlighted in red on CT image.

differentiated. The high-uptake myocardium is masked out based on its size,
spatial location within the thorax and the shape of the left lung field.

2.2 Adaptive Structure Estimation

To differentiate between lung tumors and abnormal lymph nodes, a general rule
is that lung tumors should be inside the lung field, while lymph nodes are out-
side. However, as shown in Fig. 1c, due to the lung tumor, only a portion of the
right lung field is correctly identified. Such problems are especially common for
cases with tumors adjacent to or invading into the mediastinum. Therefore, we
need to estimate the actual lung field before the tumor growth (Fig. 1e). Given
a 3D PET-CT thoracic volume I, our objective is thus to label each voxel i
(excluding the background) to the lung field or mediastinum type. To do this,
the thoracic appearance is first modeled from a set of reference images, then the
voxels are classified as L/M.

Regression-based Appearance Model. Although patient-specific conditions,
such as body weights and poses, introduce variational factors, there is still great
similarity between images for the normal structures. It is thus a fair assumption
that one image can be approximated by a weighted combination of multiple im-
ages. Therefore, at a first stage, we model the CT appearance of the original
thoracic structure (Fig. 1d) based on other reference images. PET data is not
used here due to its limited capability in depicting the anatomical structures.

We first introduce a basic formulation for the appearance model. Let y ∈
Rn×1 be the n-dimensional feature vector (i.e. voxel-wise CT intensities) of I,
and D ∈ Rn×K be the matrix of K feature vectors from K reference images Ik
(n ≫ K). The difference between y and the weighted combination of D should
then be minimized: minx ∥ y−Dx ∥22, where x ∈ RK×1 is the weight vector; and
Dx is the original appearance of I approximated.

With the derived x, each reference image Ik is assigned one weight xk, and
hence all voxels in Ik contribute equally to the approximated appearance. How-
ever, due to the non-rigid structure of the thorax and presence of the abnormali-
ties, it is normal that only a portion of Ik is similar to I and the rest should take
lower weights. Therefore, we incorporate a voxel-wise similarity-based weight
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vector for each Ik. For voxel ik of image Ik, the weight wi,k is computed as:

wi,k =
1

αi
exp(− 1

βi
∥ i− ik ∥2), βi =

K∑
k=1

∥ i− ik ∥2 (1)

where αi is to normalize
∑

k wi,k = 1. With the weight matrix W = {wi,k} ∈
Rn×K , the regression formulation thus becomes: minx ∥ y − (W ◦D)x ∥22.

Furthermore, while the above formulation is sufficient for obtaining a closely
matching appearance model, the L/M labeling information is not utilized. Since
the final objective is to achieve accurate structure labeling, it is natural to inte-
grate the supervised information to enhance the discriminative power:

minx ∥ y − (W ◦D)x ∥22 + ∥ h− (W ◦A)x ∥22
= minx ∥

(
y
h

)
−

(
W ◦D
W ◦A

)
x ∥22 = minx ∥ f −Ωx ∥22

(2)

where h ∈ {1, 2, 1.5}n×1 is the label vector of I from the initial detection outputs
(1=L, 2=M, and 1.5=O), and A ∈ {1, 2}n×K for the reference images from the
ground truth. The value 1.5 is chosen to have equal distance between O/L and
between O/M, to assign no preference for matching such areas with L or M . Both
h and A are normalized to the same range as y and D, and the approximated
appearance model is then (W ◦D)x and the labeling (W ◦A)x.

Finally, to avoid overfitting, we choose not to have all reference images con-
tributing to the appearance approximation, with a sparse regularization:

min
x

∥ f −Ωx ∥22, s.t. ∥ x ∥0≤ C (3)

where C is the constant number of reference images we limit to (set to 5 in this
study). The OMP algorithm [11] is then used to solve x.

Implementation details. The feature vector y can be a concatenation of all
voxels of I; however, this would be computationally inefficient, and a full volume-
level optimization is not necessary due to small correlations between voxels of
large distances. We thus divide I into multiple sections, each with three slices,
and y is then derived for each section. To construct D, since the reference im-
ages also contain lung tumors or abnormal lymph nodes, rather than simply
concatenating all voxels, the annotated tumor voxels are replaced with the av-
erage intensity of the lung field labeled at the initial detection step.

Graph-based Structure Labeling. Next, based on the appearance model
(Fig. 1d), we would like to classify the lung fields and mediastinum (Fig. 1e). A
straightforward idea is to use the approximated labeling (W ◦A)x as the classifi-
cation output. However, such labelings are sometimes erroneous especially for the
boundary areas, as shown in Fig. 2c. Therefore, we design a further graph-based
classification step for the structure labeling (Fig. 2d).

We first define a notation for the appearance model: G = {gi} = (W ◦D)x,
where gi is the approximated intensity for voxel i. The problem is thus to derive
a label set V = {vi ∈ {L,M}}, to classify each voxel to category L or M.
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Fig. 2. Illustration of structure labeling. (a) An axial CT slice. (b) The appearance
model. (c) The approximated labeling; compared with (d), a part of the right lung field
is misclassified as mediastinum. (d) The structure labeling output. (e) The graylevel
histograms of (b) for lung field and mediastinum. (f) The distribution of spatial dis-
tances between voxel pairs with nonzeros si,j in (b).

Based on the example, we can tell that the mislabeled part in Fig. 2c does
appear lighter in G (Fig. 2b), but still darker than the real mediastinum. It thus
motivates us to encode contrast information for the labeling. To do this, from G,
we first calculate the mean values (m) and the graylevel histograms (d, range 1
to 256) of the lung field and mediastinum (labeled during the initial abnormality
detection). As shown in Fig. 2e, a quite clear separation can be observed between
the intensity distributions of L and M; and the probability density of gi relative
to dL and dM can be a good indicator of its structure category. A 5-dimensional
feature vector qi is thus computed for each voxel i: (i) gi; (ii) gi/mL; (iii) gi/mM ;
(iv) Pr[gi ≤ dL ≤ 256]; and (v) Pr[1 ≤ dM ≤ gi].

In addition to qi, which incorporates the global-level information m and d,
contrast information can also be described in a pairwise fashion. Specifically, for
two voxels i and j, if gi and gj are similar and they are spatially close, they
would likely take the same label. Hence we define the difference si,j between i
and j based on their intensity | gi − gj | and spatial ∥ i− j ∥2 distances:

si,j = log(∥ i− j ∥2 +1)× log(| gi − gj | +1) (4)

A lower si,j would imply a higher probability of vi = vj .
We then design a CRF construct to integrate both qi and si,j to label G,

with the following energy function:

E(V |G) =
∑
i

ϕ(vi) +
∑
i,j

ψ(vi, vj) (5)

Here ϕ(vi) represents the cost of i taking the label vi, computed as 1− p(vi|qi);
and p(.) is the probability estimate from a binary linear-kernel support vector
machine (SVM) classifier based on qi. The pairwise term ψ(vi, vj) penalizes the
labeling difference between i and j, with a cost value of exp(−0.5γ−1si,j)1(vi ̸=
vj), where γ is the normalization factor as the average of all si,j in G.

Note that our pairwise term connects longer distance voxels to encourage
consistent labelings for similar voxels, not limited to neighboring voxels as the
traditional CRF construct. However, to ensure a sparse graph, a voxel i should
be linked to a small number of other voxels only. Therefore, we introduce a
constant threshold tr, so that si,j = 0, if | gi − gj |> tr with tr = 3; and Fig. 2f
indicates that most pairwise terms are formed from non-neighboring voxels. The
labeling set V is then derived by minimizing E(V |G) using graph cut [12].

Implementation details. Since the L/M labeling during the initial abnormality
detection is quite accurate for the normal areas of the thorax, we only need to
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reclassify the detected abnormalities and their surrounding areas. Therefore, the
graph-based labeling is conducted for the bounding box volume enclosing the
detected abnormality and with an extended contour (of constant width of 20
voxels) of the bounding box to cover the surrounding areas (denoted as B).
For memory efficiency, the image I is rescaled to 1/4 (not too small to affect
detection of small lymph nodes) of the size (in xy dimension) and divided into
multiple sections (three slices per section), for minimizing E(V |G).

2.3 Feature Extraction and Classification

Based on the estimated thoracic structure V (Fig. 1e), we then classify the de-
tected abnormalities (O) into tumors (T) or abnormal lymph nodes (N) (Fig. 1f).
A simple 4-dimensional feature vector is designed: (i) size of O; (ii) size of over-
lap between O and lung field labeled in V ; (iii) size of overlap between O and
mediastinum labeled in V ; and (iv) size of overlap between O and the convex
hull of lung field detected during initial abnormality detection. Features (ii)–(iv)
are also normalized by the size of O. A binary linear-kernel SVM is then trained
to classify O to T or N. To enhance the error tolerance, the classification is per-
formed on a section basis as well, and the final T/N label is produced based on a
weighted averaging of the probability estimates from each section. The weights
are computed as exp(−d/η), where d is the distance between the section and
center of O, and η is the maximum distance possible for O.

3 Experimental Results

Data Sets. The experiment is performed on 50 sets of 3D PET-CT thoracic
images from patients with non-small cell lung cancer (NSCLC), provided by the
Royal Prince Alfred Hospital, Sydney. A total of 54 lung tumors and 35 ab-
normal lymph nodes are annotated as the ground truth. For each data set, the
contour of lung field is also roughly delineated – we do allow some error margins
in the delineation since we do not expect precise lung segmentation. Five images
representing the typical cases are selected manually as the training set for both
structure labeling and classification between tumors and lymph nodes. The data
sets are then randomly divided into five sets; and within each set, each image is
used as the testing image, with the other nine as the reference images.

Initial Detection. The initial abnormality detection results in a total of 4 false
negatives (2 tumors and 2 lymph nodes), and 5 false positives. This is equivalent
to a recall of 95.5% and precision of 94.4% for all abnormalities. These measure-
ments are very similar to the detection rates reported in [5].

Structure Estimation. The usefulness of each component in the structure es-
timation can be seen from Table 1. The accuracy is computed as # voxels with
correct labeling/ size of the bounding box volume B. First, with the proposed
graph-based structure labeling, we evaluate the appearance model with: basic
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Table 1. The labeling accuracy comparing various components of our method. R-*
are variations of the regression-based appearance model, and L-* are variations of the
graph-based structure labeling. Refer to the text for details.

R-basic R-weight R-label R-sparse L-approx L-global L-neigh L-long

Acc (%) 83.9 87.9 89.2 89.7 86.8 88.2 87.4 89.7

regression, including voxel-wise weights, labeling information, and sparse regu-
larization, to confirm the benefits over the basic regression model. Next, with the
fixed regression-based appearance model, we then evaluate the structure labeling
by: using the regression-approximated labeling, classification on global contrast
features, and CRF with standard neighboring pairwise terms or long-distance
pairwise terms. The results suggest the advantages of the global and pairwise
contrast information; and that the standard pairwise terms actually cause lower
performance than the non-structured classification. Note that R-sparse and L-
long both represent our proposed method.

Table 2. The detection recall and precision.

Tumor (Proposed) Node (Proposed) Tumor [5] Node [5]

Recall (%) 90.7 88.6 84.4 77.8

Precision (%) 89.1 88.6 83.8 76.9

Final Detection. Among the detected abnormalities, three tumors and two
lymph nodes are misclassified as the other type. The mislabelings are mainly
due to the close resemblance between tumors and lymph nodes at the hilum;
and one lymph node is mistaken as tumor due to it connecting into an adjacent
tumor volume. Together with the five false positive detections, four of which
classified as tumors and one as lymph node, the overall detection recall and
precision are shown in Table 2. The results show significant improvement over
[5], especially for the abnormal lymph nodes; and it suggests the effectiveness
of our approach for differentiating the two abnormalities, by mainly analyzing
the degree of overlap between the detected abnormality and the estimated lung
structures. Fig. 3 shows three examples with tumors near to the mediastinum
and lymph nodes attaching to the lung field, to demonstrate the capability of
our proposed method in handling such cases.

Fig. 3. Three example detection results, with each showing a PET axial slice and the
detected tumor or abnormal lymph node highlighted on the CT slice (red for tumors
and orange for lymph nodes).
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4 Conclusions

We proposed a new detection method for lung tumors and abnormal lymph
nodes from PET-CT thoracic images. The actual lung field and mediastinum are
estimated with a regression-based appearance model and graph-based structure
labeling, and the detected abnormalities are then classified based on their degree
of overlap with the estimated structures. We have also shown improved detection
performance compared to the existing method. The proposed method would
assist the physicians in the image interpretation process and potentially also
provide a second opinion for staging.
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