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Abstract. Positron emission tomography - computed tomography (PET-
CT) is now accepted as the best imaging technique to accurately stage
lung cancer. The consistent and accurate interpretation of PET-CT im-
ages, however, is not a trivial task. We propose a discriminative, multi-
level learning and inference method to automatically detect the patho-
logical contexts in the thoracic PET-CT images, i.e. the primary tumor
and its spatial relationships within the lung and mediastinum, and dis-
ease in regional lymph nodes. The detection results can also be used
as features to retrieve similar images with previous diagnosis from an
imaging database as a reference set to aid physicians in PET-CT scan
interpretation. Our evaluation with clinical data from lung cancer pa-
tients suggests our approach is highly accurate.

1 Introduction

Lung cancer is among the most common malignancies in the Western world, and
accurate staging is critical for the selection of the most appropriate therapy, be it
surgery, chemotherapy, radiotherapy or combined therapies. The size and extent
of the primary tumor and the status of mediastinal lymph nodes are critical for
staging the thorax; automated methods to achieve this goal can shorten the time
a physician needs to read an image.

PET-CT is now accepted as the best imaging technique to accurately stage
the most common form of primary lung cancer, non-small cell lung cancer
(NSCLC). PET-CT scanners produce co-registered anatomical (CT) and func-
tional (PET) patient information from a single scanning session. The PET tracer
18F-fluoro-deoxy-glucose (FDG) is the most commonly used tracer for clinical
PET-CT diagnosis, and tumors typically take up more FDG than surrounding
normal structures.



2 Y. Song el al.

Our aim is to develop a method to automatically detect the primary tumor,
the spatial relationships of the tumor within the lung and to the mediastinum,
and the location of disease in lymph nodes. The objective is not to perform a
precise segmentation, but to provide an inference of the pathological context
and function as a robust localization system to assist the reading physician.
The detection output can also serve as input to a content-based image retrieval
(CBIR) system to retrieve similar imaging cases to help interpretation.

Related work. The majority of existing work focuses on segmentation on CT
images using various classification techniques [1–3]. Our method is partially mo-
tivated by these approaches. However, they do not support concurrent detection
of tumors and abnormal lymph nodes, and do not consider the complexity caused
by two pathological types within one image. Recent work by Wojak et.al. intro-
duced a tumor and lymph node segmentation method on PET-CT images using
energy minimization [4]. However, the work does not address the differentiation
between tumors and lymph nodes, and the spatial context of the tumors.

The work most similar to ours was reported by Wu et.al. [5], for detecting
lung nodules and the connectivity with vessel, fissure and lung wall, and did not
aim for perfect segmentations. However, it differs from our approach in several
aspects: (1) it works on CT subvolumes with the nodule appearing at the center,
while our method works on raw PET-CT images of the entire thorax; (2) our
method detects abnormal lymph nodes and differentiates them from the primary
tumors; and (3) we are interested in the higher-level spatial relationships, i.e.
the connectivity between tumors and the chest wall and mediastinum.

Our work has also been provoked by the idea of multi-class object detection
proposed for general computer vision problems [6–8]. Different from these meth-
ods, we design three levels of features to exploit the specific characteristics of
PET-CT thoracic images, and a different multi-level discriminative model for
more effective inference of the pathological context.

2 Method

2.1 Discriminative Structure Localization

At the first stage we detected four types of structures – the lung fields (L),
mediastinum (M), tumor (T) and disease in lymph nodes (N) – from the thoracic
images. We formulated the detection as a multi-level, multi-class (L, M, T or N)
object localization problem. For an image I, the classification score with labeling
Y (the label matrix of I) is defined as:

S(I,Y) =
∑
l

αyl
· fl +

∑
s

βys · fs +
∑
o

γyo · fo (1)

where fl, fs and fo are the three levels of feature vectors (local, spatial, and
object levels) of I; α, β and γ are the respective feature weights; yl, ys and yo
are the class labels at each level, representing the four classes; and l, s and o are
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the indices of the regions formed at each level in the transaxial slices. The goal
was to find the labeling Y that maximized the score S for image I.

Our approach was region-based for effective modeling of the higher-level fea-
tures, and we designed a cascaded learning approach for the classification. The
higher-level spatial and object features were important for differentiating the
four types of structures, especially for between T and N, and between T and
M, as described in more details in the following sections. We also employed a
two-phase design by exploring first the 2D features at the local and spatial levels,
then the 3D features at the object level; this was to optimize the classification
for each image slice first before considering the inter-slice relationships.

Local-level Modeling. Each image slice was first clustered into a number
of regions of various sizes and shapes using the mean-shift algorithm [9]. The
regions were generated separately for PET and CT slices, and then merged
into one set for each slice pair. Each region Rl was then represented by the
local feature fl: the mean CT density; and the mean standardized uptake values
(SUV), which was computed by normalizing the mean SUV of Rl based on an
adaptive threshold [10].

At the local level, fl could not differentiate between T and N, because both
had high CT densities and high SUV values. So, we limited yl to take three
values, L, M or T/N, to focus on differentiating the pathological tissues from
lung fields and mediastinum.

Spatial-level Modeling. Besides an inability to distinguish T and N, another
major problem with local-level modeling was that areas surround the tumor were
often misclassified as M, which could subsequently cause T to be confused as N.
To better classify the surrounding area, we observed that the spatial information
played an important part, e.g. its proximity with T and L and distance from M,
and the differences between its average CT density and SUV and those of the
other regions. Similar spatial features could also help to improve the labeling of
some misclassified regions in the mediastinum.

The spatial-level features were thus computed as the following feature vector
fs for region Rs in 11 dimensions: (Dim. 1-3) the average spatial distance from
region Rs to other regions Ri of type k (k ∈ {L,M, T/N}); (Dim. 4) the size
of Rs; (Dim. 5-7) the difference between the mean CT density of Rs and the
average CT densities of all regions of type k; (Dim. 8-10) the difference between
the mean SUV of Rs and the average SUV of all regions of type k; and (Dim.
11) the local-level labeling at Rs.

The regions Rs at this level were different from the local-level ones. We first
performed another mean-shift clustering for areas around the detected abnormal
regions, to discover finer-scale details. For regions not connected with the abnor-
mal areas, and with high confidence of being L or M (based on the classification
score), we also merged the connected regions of the same type into one region.
And similarly to yl, ys could be either L, M or T/N.
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Object-level Modeling. So far, T and N were still treated as one type, and
the transaxial slices were processed separately. Based on the classification results
of the previous level, by merging connected regions with the same label into
one region, a slice was then represented as a relatively small number of regions,
roughly corresponding to the anatomical structures, but with some discontinuous
segments. The goal was thus to differentiate tumors from abnormal lymph nodes
and smooth the labeling, and we observed that the object-level information was
the main distinctive factor. For example, T should be within L and possibly
invading into M while N should be within M; hence, the distance between T and
L regions should be small and the size of L surrounding T should be large, while
N should have similar properties relating to M.

At this level, we thus explored the intra- and inter-slice object-level features.
For each merged region Ro, a 32-dimensional feature vector fo was computed:
(Dim. 1-15) the minimum distance from Ro to the type k areas in the d direction
(above, below, left, right, and the z direction); (Dim. 16-30) the average size of
type k in the d direction relative to Ro, normalized by the dimension of Ro;
(Dim. 31) the size of Ro; and (Dim. 32) the spatial-level labeling at Ro. Unlike
yl and ys, the labeling yo should then take four possible values: L, M, T or N.

Cascaded Learning and Inference. To create the discriminative classifier,
we performed piecewise learning for the feature weights α, β and γ (Eq. (1)).
We first trained a one-versus-all multi-class support vector machine (SVM) for
the local-level model, then another multi-class SVM for the spatial level, and
lastly a third one for the object level. At each stage, the training focused on the
features of that level only, with classification results of the previous level as the
input for feature computation.

Although we could rewrite the score function into structural-SVM type [6],
we chose to do SVM-based piecewise learning mainly because: (1) a feature
vector combining all three levels generated based on the training data would
not capture the cascaded nature of higher-level features dependent on the lower
levels, thus would not achieve the optimal performance; and (2) our features were
designed to be independent between regions at the same level, so optimization
for the entire image collectively was not necessary.

A three-level inference based on mean-shift clustering with the three learned
multi-class SVMs was then performed. The final labeling was chosen as the class
type with the highest combined margin from three levels. The classification could
be done per region using SVM, without considering inter-dependencies between
regions, because the spatial relationships were derived based on the labeling of
the previous level, not within the same level.

2.2 Pathological Context Description

We described the pathological context for the detected tumor (T) and abnor-
mal lymph nodes (N) in three aspects: (1) texture features: the mean, standard
deviation, skewness and kurtosis of the Gabor filtered T and N areas for both
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CT and PET; (2) shape features: the volume, eccentricity, extent and solidity
of T and N; and (3) spatial features: the distance to the chest wall and medi-
astinum for tumor, and distance to two lung fields for lymph nodes, normalized
by the size of the tumor or lymph node itself. The distances were computed in
four directions per slice, and averaged across all slices weighted by the detection
score S. So, slices with more obvious T or N regions would contribute more to
the spatial feature.

Besides extracting the feature vectors of the detected T/N areas, we also
extended the context description with an image retrieval component, to retrieve
a set of images with similar pathological patterns for a given query image. The
retrieved images, which were stored in the database with diagnosis information,
could be used to aid image interpretation. Given the query image I and the
image J , the distance was defined as:

DI,J = ω · (|vI − vJ |/(vI + vJ)) = ω · vI,J (2)

where v was the feature vector of the image (concatenation of the texture, shape
and spatial features of T and N), and ω was the feature weights. A training set
was constructed of Q triplets: ⟨I, J,K⟩, where I was similar to J , and dissimilar
to K. It was thus expected to satisfy DI,K > DI,J , and the weight vector ω was
computed based on the large-margin optimization method [11]:

argminω,ξ≥0
1

2
∥ω∥2 + C

∑
q

ξq, s.t. ∀q : ω · (vI,K − vI,J) ≥ 1− ξq (3)

The training data ⟨I, J,K⟩ captured the search preference, e.g. based on tumor
characteristics only, or including lymph nodes. By changing the training data,
the derived weights ω would vary and result in different retrievals.

2.3 Materials and Preprocessing

In this study, a total of 1279 transaxial PET-CT image slice pairs were selected
from 50 patients with NSCLC. The images were acquired using a Siemens TrueV
64-slice PET-CT scanner (Siemens, Hoffman Estates, IL) at the Royal Prince
Alfred Hospital, Sydney. All 50 cases contained primary lung tumors, and 23 of
them contained abnormal lymph nodes. The locations of tumors and disease in
regional lymph nodes were annotated manually, and for each patient study, the
other 49 patient studies were marked similar or dissimilar, as the ground truths.
A fully-automatic preprocessing was performed on each CT slice to remove the
patient bed and soft tissues outside of the lung and mediastinum, based on
simple thresholding, connected component analysis and filling operations. The
resulting mask was then mapped to the co-registered PET slice.

3 Results

The structure localization performance for the 50 patient studies is summarized
in Table 1a. Based on visual inspections, a volume (case-level) that was classified
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accurately with its boundary matching closely to the ground truth was consid-
ered correct. The multi-level model was trained on slice pairs randomly selected
from 10 imaging studies. To further evaluate the localization performance at the
slice level, Table 1b shows the measurements for all 1279 slices. We also compared
our method with two other approaches (Table 1c and 1d): a four-class SVM for
voxel-level classification; and a four-class SVM for region-level classification after
mean-shift clustering (identical to our local-level modeling, except training for
four classes). Both approaches were trained using the same set of data as our
local-level modeling. Our multi-level modeling showed clear advantages, espe-
cially in differentiating tumor and abnormal lymph nodes. As a component of
our model, Table 1d illustrated the benefit of region-based processing compared
to Table 1c. Some visual results are shown in Figure 1.

Table 1. The pairwise confusion matrix of the four region classes tested on 50 patient
studies. (a) Our method - image/case level results. (b) Our method - finer slice-level
results. (c) Gabor+SVM - image/case level results. (d) Gabor+Mean-shift+SVM -
image/case level results.

Ground Prediction (%)
Truth L M T N

Lung lobe 100 0 0 0
Mediastinum 0 94.3 3.8 1.9

Tumor 0 1.6 84.4 14.1
Lymph node 0 3.7 18.5 77.8

(a)

Ground Prediction (%)
Truth L M T N

Lung lobe 100 0 0 0
Mediastinum 13.3 60.2 21.7 4.8

Tumor 6.8 10.2 42.4 40.7
Lymph node 5.6 11.1 27.8 55.6

(c)

Ground Prediction (%)
Truth L M T N

Lung lobe 99.2 0.8 0 0
Mediastinum 0 97.1 2.1 0.8

Tumor 1.7 6.1 87.8 4.3
Lymph node 0 7.5 12.3 80.2

(b)

Ground Prediction (%)
Truth L M T N

Lung lobe 100 0 0 0
Mediastinum 0 83.3 5.0 11.7

Tumor 0 16.5 43.7 39.8
Lymph node 0 6.5 35.5 58.1

(d)

The sensitivity and specificity of tumor/lymph node localization relative to
the lung and mediastinum are listed in Table 2a. In testing, the distances be-
tween the tumor and the chest wall and mediastinum/hilum, and between the
abnormal lymph nodes and the left and right lung lobes, were assessed to de-
termine the sensitivity and specificity. The remaining errors were mainly caused
by misclassifications between tumors near the mediastinum and the abnormal
lymph nodes. Our method resulted in higher sensitivity and specificity in deriving
the spatial relationships, compared to using only local-level features (Table 2b),
because of the highly effective structure localization.

Finally, we evaluated the retrieval performance by using each imaging study
as the query to retrieve the most similar cases, and the average precision and re-
call were computed. We compared our method with techniques based on weighted
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histogram and bag-of-SIFT [12] features for global and local feature extraction;
and both approaches were trained in the same way as our method for similarity
measure. As shown in Table 3, our method achieved much higher precision and
recall. The results showed that our method could extract the salient (patholog-
ical) features more effectively than the general techniques; and suggest that the
detected context could be used in a CBIR system.

Table 2. The sensitivity (SE) and specificity (SP) of the tumor and lymph node
localization relative to the lung lobes and mediastinum tested on 50 cases. (a) Our
method and, (b) Gabor+Mean-shift+SVM.

Tumor Lymph node
Wall Hilum Left Right

SE (%) 100 97.2 92.9 88.9

SP (%) 98.0 84.8 89.4 91.5

(a)

Tumor Lymph node
Wall Hilum Left Right

SE (%) 83.3 82.9 93.3 87.5

SP (%) 98.0 77.8 65.0 69.2

(b)

Fig. 1. Six examples of structure localization, showing one transaxial slice pair per
case. The top row is the CT image slice (after preprocessing); the middle row is the
co-registered PET slice; and the bottom row shows the localization results, with 5
different gray scale values (black to white) indicating background, L, M, T and N.

4 Conclusions

We proposed a new method to automatically detect the primary tumor and
disease in lymph nodes, and the spatial relationships with the lung and me-
diastinum on PET-CT thoracic images. By exploring a comprehensive set of
features at the local, spatial and object levels, the discriminative classification
achieves an accurate localization of the various structures in the thorax. The
work is an initial step towards a computer aided system for PET-CT imaging
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Table 3. The precision-recall measure of the retrieval results of the top one, three or
five most similar matches on 50 cases. Our method is compared with the histogram
(HIST) and bag-of-SIFT [12] features (BoSF) based approaches.

Precision (%) Recall (%)
Ours HIST BoSF Ours HIST BoSF

Top-1 84.0 46.0 32.0 14.1 7.5 6.0

Top-3 70.7 34.7 29.3 31.4 14.1 12.7

Top-5 63.2 28.8 25.6 44.3 19.7 17.9

diagnosis for lung cancer staging. The extracted pathological contexts also show
high precision when used to retrieve the most similar images.
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