
Locality-constrained Subcluster Representation

Ensemble for Lung Image Classification

Yang Songa,∗, Weidong Caia, Heng Huangb, Yun Zhouc, Yue Wangd, David
Dagan Fenga

aBiomedical and Multimedia Information Technology (BMIT) Research Group, School of
IT, University of Sydney, NSW 2006, Australia

bDepartment of Computer Science and Engineering, University of Texas, Arlington, TX
76019, USA

cRussell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins
University School of Medicine, Baltimore, MD 21287, USA

dBradley Department of Electrical and Computer Engineering, Virginia Polytechnic
Institute and State University, Arlington, VA 22203, USA

Abstract

In this paper, we propose a new Locality-constrained Subcluster Represen-
tation Ensemble (LSRE) model, to classify high-resolution computed tomog-
raphy (HRCT) images of interstitial lung diseases (ILDs). Medical images
normally exhibit large intra-class variation and inter-class ambiguity in the
feature space. Modelling of feature space separation between different classes
is thus problematic and this affects the classification performance. Our LSRE
model tackles this issue in an ensemble classification construct. The im-
age set is first partitioned into subclusters based on spectral clustering with
approximation-based affinity matrix. Basis representations of the test image
are then generated with sparse approximation from the subclusters. These
basis representations are finally fused with approximation- and distribution-
based weights to classify the test image. Our experimental results on a large
HRCT database show good performance improvement over existing popular
classifiers.
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1. Introduction

The interstitial lung disease (ILD) refers to a group of more than 150 dis-
eases affecting the lung parenchyma (Webb et al., 2008). Prolonged ILD may
result in pulmonary fibrosis and affect breathing. To diagnose ILD with ra-
diology, HRCT imaging is currently the preferred technique, which provides
about 10 times more resolution than the conventional CT of the chest. This
enables more detailed analysis of the pulmonary parenchymal abnormalities
for a more confident diagnosis. Manual interpretation of HRCT imaging is
however time-consuming and prone to inter-observer variability. In partic-
ular for ILD, the radiological patterns include various consolidation, linear
or reticular opacities, small nodules, cystic airspaces, ground-glass opacities,
and thickened interlobular septa (Ryu et al., 2002). The large variety of
disease types and complexity of tissue patterns imply that manual analysis
of ILD is challenging even for experienced radiologists (Webb et al., 2008).
Computerized approaches, on the other hand, are normally considered ca-
pable of discovering image details that are difficult to perceive by human
(Tourassi, 1999; Li et al., 2001), and are effective against inter-observer vari-
ability by providing a standardized solution.

Our aim of this study is to automatically classify HRCT image patches
of five tissue classes: normal, emphysema, ground glass, fibrosis, and micron-
odules (examples shown in Figure 1). The latter four classes are prevalent
characteristics of ILD and detecting them is important to identify the ILD
types. The main challenge in accurate classification of ILD tissue patterns
is the intra-class variation and inter-class ambiguity. Images of the same
class can exhibit different visual patterns, while images of different classes
can display similar visual features. The feature space will be complicated
with scattering regions within the same class and overlapping areas between
different classes, even with domain-customized feature design (Depeursinge
et al., 2012b; Song et al., 2013). Such issues inevitably cause difficulties to
the classifier. Our focus of this study is thus to design a new classifier to
tackle the intra-class variation and inter-class ambiguity.

1.1. Related Work

1.1.1. Ensemble Classification

Classification based on an ensemble of classifiers has been quite popular
in medical image analysis. The basic principle of ensemble classification is
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Figure 1: Example HRCT images (segments of axial slices) of the five ILD types: (a)
normal, (b) emphysema, (c) ground glass, (d) fibrosis, and (e) micronodules. Note that
each segment contains multiple image patches (details in Section 3).

that by integrating multiple base classifiers, better classification performance
would be obtained than using the individual base classifiers (Rokach, 2010).
Most of the existing ensemble classification methods can be categorized as
the bagging (Lee et al., 2013; Chatelain et al., 2013; Criminisi et al., 2013;
Yaqub et al., 2014; Allen et al., 2014; Zhao et al., 2014; Parrado-Hernandez
et al., 2014) or boosting (Jacobs et al., 2011; Gorelick et al., 2013; Huang
et al., 2014; Song et al., 2014c) models. A major difference between bagging
and boosting is that the base classifiers in bagging are normally trained
independently while in boosting the successive base classifiers are influenced
by the prior ones. In both models, a single learning algorithm is used as
the base classifier, including the support vector machine (SVM) (Parrado-
Hernandez et al., 2014), decision or regression tree (Gorelick et al., 2013; Lee
et al., 2013; Chatelain et al., 2013; Criminisi et al., 2013; Yaqub et al., 2014;
Allen et al., 2014; Zhao et al., 2014), logistic regression (Jacobs et al., 2011),
and sparse representation (Huang et al., 2014; Song et al., 2014c). Boosting
algorithms can also be the building blocks in a tree structured classifier (Tu,
2005; Lu et al., 2012b; Feulner et al., 2013). The choice of base classifier is
motivated by the particular imaging application, for which the base classifiers
need to provide diverse but good classification performance to enable more
accurate classification by the ensemble. The outputs from base classifiers are
then fused via some variants of weighted averaging. The weighting schemes

3



are however usually predefined based on simple assumptions or the standard
boosting algorithms, and might not adapt well to the specific data to be
classified.

Generation of training subsets for the base classifiers is typically per-
formed randomly or following a certain distribution. Random selection of
feature subspace is also conducted with the random forest (Breiman, 2001)
models (Lee et al., 2013; Chatelain et al., 2013; Criminisi et al., 2013; Yaqub
et al., 2014; Allen et al., 2014; Zhao et al., 2014) to introduce further diversity
in the base classifiers. The concept of representing multi-modal classes with
multiple pseudo-classes and classifying them with separation hyperplanes be-
tween the pseudo-classes is proposed (Yu et al., 2010). Such a concept can
be useful to classification problems with large intra-class variation. However,
without a fusion component, the effectiveness of classification would be highly
dependent on the individual separation hyperplanes. Recently an emerging
trend of method is to sub-categorize / partition the training set of each class
by feature clustering (Escalera et al., 2008; Dong et al., 2013; Song et al.,
2014b). A base classifier is then trained for each subset, and the results are
fused by weighted decoding (Escalera et al., 2008), kernel regression (Dong
et al., 2013), or large margin aggregation (Song et al., 2014b). These sub-
categorization methods partition the data by exploiting the characteristics of
the feature space. Each subset clustered would have lower feature variation
compared to the entire data set, hence helping to incorporate diversity and
improve classification performance of the base classifiers. There are however
few research in this area, and the design choices of the clustering algorithms,
base classifiers, and fusion techniques, still remain under studied.

We can also consider the k-nearest neighbor (kNN) classifier as an en-
semble model. With kNN, each data sample serves as a base classifier and
majority voting from these base classifiers leads to the fused classification
output. kNN is non-parametric and can naturally handle a large number
of classes. Its effectiveness is however affected by the data distribution in
the feature space. To improve the classification performance, discriminative
learning has been incorporated. For example, in the SVM-KNN method
(Zhang et al., 2006), SVM-based classification is applied in the localized fea-
ture space determined by the nearest neighbors of the test data. SVM can
also be applied first to identify data samples that are close to the decision
boundary, based on which cluster centers are derived and kNN is used to
classify the data (Liu et al., 2011a). Learning-based distance metric is also
a popular trend, such as the large margin nearest neighbor (LMNN) method
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(Weinberger and Saul, 2009) that learns a Mahalanobis distance metric so
that data from the same class would be more similar than those from differ-
ent classes. Such a distance metric, however, is monolithic and could still be
sensitive to the feature space complexity.

1.1.2. Sparse Representation

Sparse representation can be considered similar to kNN that a test image
is classified based on similar images in the reference set. The major difference
from kNN is that sparse representation identifies similar images by sparse ap-
proximation of the test image from linear combination of reference images,
while kNN uses direct distance computation. Sparse representation does not
require a parametric model to characterize the feature space separation (e.g.
SVM) and can thus be particularly effective to handle the feature space com-
plexity. Classification using sparse representation has recently been applied
in many medical imaging applications (Liu et al., 2011b; Weiss et al., 2013;
Xu et al., 2013; Tong et al., 2013; Song et al., 2013; Srinivas et al., 2014;
Wang et al., 2014; Song et al., 2014a,c,b; Huang et al., 2014). Sparse repre-
sentation has also been applied in multi-atlas models and the approximation
coefficient is used as the weight vector to fuse the multiple atlases (Zhang
et al., 2012; Song et al., 2012; Liao et al., 2013; Song et al., 2014a). The
weights derived in this way would be adaptive to the test data and normally
provide more desirable results than using predefined weighting schemes.

The effectiveness of sparse representation is largely affected by the qual-
ity of the reference data (Wright et al., 2010). In particular, if the reference
set has large intra-class variation and inter-class ambiguity, a diverse set of
reference images could be selected during the sparse approximation and this
could result in better approximation from the wrong class than the correct
class. One way to address this issue is to adapt the reference set to the test
image. For example, the reference dictionary can be rescaled to increase the
difference between the test image and the wrong class (Song et al., 2013).
The locality-constrained linear coding (LLC) (Wang et al., 2010) has become
widely popular in general computer vision. The essential idea is to encourage
higher weights to be assigned to reference images that are more similar to the
test image. The locality information in the feature space is thus exploited
and the sparse approximation can be efficiently solved analytically. LLC has
been directly applied for medical imaging and good performance has been
demonstrated (Zhang et al., 2013; Xing and Yang, 2013; Wu et al., 2014).
Another way is to partition the reference set into subsets and use sparse pre-

5



sentation as the base classifiers in a boosting (Huang et al., 2014; Song et al.,
2014c) or sub-categorization (Song et al., 2014b) model. The subsets are
expected to have lower intra-class variation and inter-class ambiguity, hence
the sparse approximation at the subset-level could be more representative of
the test image. The sub-categorization method (Song et al., 2014b) is ex-
pected to provide higher classification performance than the boosting-based
methods (Huang et al., 2014; Song et al., 2014c), with its clustering-based
reference partition and learning-based large margin fusion of base classifiers.
However, the large margin fusion is relatively complex and could be sensitive
to the selection of training set.

1.2. Our Contribution

In this work, we propose a locality-constrained subcluster representation
ensemble (LSRE) model to classify HRCT image patches of five ILD tissue
patterns. Our model comprises three stages. First, the images are parti-
tioned hierarchically into subclusters based on spectral clustering with an
approximation-based affinity matrix. Next, basis representations of the test
image are obtained by sparse approximation with each subcluster as the
reference dictionary. Finally, the basis representations are fused based on
approximation- and distribution-based weights to classify the test image.
Locality constraints are incorporated into the approximation objective for
each of the three stages. Theoretically, the subclusters would capture the
localized regions in the feature space, hence explicitly capturing the intra-
class variation and inter-class ambiguity, and leading to diversity between
the subclusters. Then with the basis representations as the base classifiers
and data-adaptive design of the fusion weights, we expect that the final clas-
sification output would be more accurate than using sparse representation of
the entire reference set.

Our LSRE model is closely related to ensemble classification, particularly
the boosting techniques with sparse representation as the base classifiers
(Huang et al., 2014; Song et al., 2014c), and the sub-categorization methods
with clustering-based reference partition (Escalera et al., 2008; Dong et al.,
2013; Song et al., 2014b). Different from these techniques, we designed a hi-
erarchical spectral clustering algorithm with an approximation-based affinity
matrix to partition the images. We also designed a data-adaptive weighting
scheme to fuse the base classifiers with approximation- and distribution-based
computations. In addition, we incorporated the locality constraints based on
the LLC construct (Wang et al., 2010) to model local similarities between
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Figure 2: Overview of our LSRE model.

images and improve the computational efficiency. Our LSRE model is de-
signed based on little domain knowledge about the ILD images, it can thus
be generally applicable to other medical imaging applications.

The rest of the paper is organized as follows. A detailed description of
our LSRE model is given in Section 2. The dataset and implementation
details are described in Section 3. Our evaluation results and discussion are
presented in Section 4. Finally Section 5 concludes the paper.

2. Methods

Given a set of N images (i.e. HRCT image patches), each with an H-
dimensional feature vector xi ∈ RH and X = {xi : i = 1, ..., N}, our aim
is to determine the class label of each image in a multi-class classification
setting. Figure 2 shows an overview of our LSRE model. First, the image set
X is clustered hierarchically into subclusters, using spectral clustering with
an affinity matrix derived in an LLC-based construct. A subcluster repre-
sents a localized region in the feature space, and could contain a mixture of
images from different classes due to large inter-class ambiguity. Second, for
a test image x, each subcluster (excluding x and any other images belonging
to the same subject as x) is used as the reference dictionary to compute a
basis representation of x based on LLC. A basis representation captures the
approximation of x from a subcluster, and can be considered as a base clas-
sifier. Lastly, the basis representations are fused in an LLC-based model to
obtain the weights of subclusters in approximating the test image x. Com-
bined with the distribution-based weights estimating the reliabilities of basis
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representations, the base classifiers at the subcluster-level are then fused to
produce the class label of x.

2.1. Subcluster Generation

The first stage of our LSRE method is to divide the image set X into a
union of K subclusters {Sk : k = 1, ..., K} with minimum within-subcluster
feature variation. Our design considerations for this stage are as follows.
First, we expect that the images assigned to one subcluster are highly simi-
lar but they need not belong to the same class. While similar images should
ideally be of the same class, this is usually not the case with large inter-class
ambiguity. We thus do not require a subcluster to represent a single class and
our LSRE method is designed to accommodate this heterogeneity in subclus-
ters. Second, we expect to generate many subclusters with K determined
at runtime. Due to large intra-class variation, the feature space of one class
would be scattered into multiple local clusters. We would like to capture
these localized regions (i.e. subclusters) so that the collection of subclusters
would better describe the global feature space. This is different from the
usual clustering approaches with one class represented by one cluster.

To this end, we design a hierarchical spectral clustering-based method
with an affinity matrix derived using an LLC-based model. Assume an affin-
ity matrix A ∈ RN×N is defined, with the (i, j)th element Aij indicating the
similarity between images xi and xj. With spectral clustering, X is divided
into clusters by applying the normalized cuts algorithm on A (Shi and Malik,
2000). The problem is thus how to define the matrix A. An illustration of
our subcluster generation method is shown in Figure 3.

2.1.1. Approximation-based Affinity Matrix

The affinity matrix A is essential in determining the clustering perfor-
mance. Typically A is computed using the Gaussian similarity function based
on a fully connected graph: Aij = exp{−∥xi − xj∥2/(2σ2)}, where σ sets the
width of the neighborhood (von Luxburg, 2007). More advanced techniques
based on sparse coding (SSC) (Elhamifar and Vidal, 2009), low-rank repre-
sentation (LRR) (Liu et al., 2010), and least squares regression (LSR) (Lu
et al., 2012a) have recently been reported in the area of subspace clustering.
These techniques have a common hypothesis that images would be well ap-
proximated by the other images of the same cluster. They are different in the
actual approximation algorithms used, and SSC produces a sparse matrix A
while LRR and LSR output dense matrices. In our problem, we prefer A to
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Figure 3: Illustration of subcluster generation. The example contains two classes, and the
images belonging to these two classes are represented by squares and triangles, respectively.
(a) gives a simplified view of the feature space of these images. An image of class 1
(rectangle with red solid outline) is nearest to three images of the same class (rectangle
with red dashed outline); similarly an image of class 2 and its three nearest neighbors are
shown. (b) visualizes the structure of the coefficient matrix Z. Each row vector contains
the approximation coefficient with three non-zero elements, with which the image with
solid outline is approximated by the three corresponding images. The coefficient matrix
then converts to the affinity matrix A used in spectral clustering. (c) shows the 2-level
hierarchical clustering output. At the first level, two clusters are created with the yellow
line denoting the separation. At the second level, two more clusters are created indicated
by the purple line. Altogether, three subclusters are generated during this process.

be sparse since we expect to generate many subclusters each containing only
highly similar images, and SSC suits our aim in this aspect. However, SSC
is time consuming due to the optimization routine of sparse coding. On the
other hand, LLC as a sparse approximation algorithm is highly efficient with
an analytical solution. We thus design a new approximation-based algorithm
based on the LLC model to derive the affinity matrix A.

Specifically, we define the following approximation objective:

min
{zi}

N∑
i=1

∥xi −Xzi∥2 + λ∥di ⊙ zi∥2

s.t. 1T zi = 1, ∥zi∥0 ≤ C1, zi(i) = 0, ∀i
(1)

The first term penalizes the difference between the target image xi and its
approximation Xzi. X ∈ RH×N denotes the concatenation of feature vectors
of all images. The coefficient vector zi ∈ RN contains the weights of images
in X in approximating xi, and the total weight is 1. C1-sparsity is expected
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for zi, i.e. ∥zi∥0 ≤ C1, and C1 is a constant. The target image xi should have
no contribution towards its own approximation and hence the corresponding
weight zi(i) = 0. The second term encourages to assign lower weights to
images with larger distances from xi. The symbol ⊙ denotes the element-
wise multiplication, and di ∈ RN contains the pairwise Euclidean distances
between the images in X and xi. The parameter λ controls the balance
between the two terms.

By minimizing this objective function, the non-zero elements in zi indicate
the degrees of similarity between the corresponding images and xi. The
second term is the essential idea of locality constraints in LLC, and zi would
contain only a small number of significant values, hence sparsity is encoded.
This term also implies that the objective function can be efficiently solved
with an approximative approach by replacing X with the top similar images.
Similarly, we design the following approach to solve Eq. (1) efficiently.

We first use kNN with Euclidean distance to obtain the top C1 similar
images in X for the target image xi. These C1 images would not contain xi

itself to satisfy the constraint zi(i) = 0. Denote the matrix concatenating
the C1 image feature vectors as X̃i ∈ RH×C1 . Eq. (1) is then reformulated
as:

min
{z̃i}

N∑
i=1

∥xi − X̃iz̃i∥2 + λ∥d̃i ⊙ z̃i∥2

s.t. 1T z̃i = 1, ∀i
(2)

where d̃i ∈ RC1 contains the pairwise Euclidean distances between X̃i and xi,
and z̃i ∈ RC1 represents the coefficient vector with a reduced dimension C1

hence effectively satisfying ∥z̃i∥0 ≤ C1. Next, by introducing the Lagrange
multiplier α, we define the Lagrange function L(z̃i, α) as:

∥xi − X̃iz̃i∥2 + λ∥d̃i ⊙ z̃i∥2 + α(1T z̃i − 1) (3)

which is equivalent to:

z̃Ti Gz̃i + λz̃Ti Dz̃i + α(1T z̃i − 1) (4)

where G = (X̃i − xi1
T )T (X̃i − xi1

T ), and D = diag([d̃21, ..., d̃
2
C1
]). Then, let

∂L(z̃i, α)/∂z̃i = 0, we have:

2(G+ λD)z̃i + α1 = 0 (5)
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The vector z̃i is derived analytically by:

z̃∗i = (G+ λD) \ 1
z̃i = z̃∗i /(1

T z̃∗i )
(6)

By projecting z̃i back to the original dimension of zi, we finally obtain the C1-
sparse coefficient vector for each target image xi. Note that in this approach,
the selection of C1 similar images is determined by the initial kNN step; but
the degrees of similarity zi are derived with the approximation objective and
could be quite different from the distance-based measures.

By concatenating the coefficient vectors derived for all target image {xi :
i = 1, ..., N}, we obtain the coefficient matrix Z ∈ RN×N (illustrated in
Figure 3b). The affinity matrix A is then computed as (|Z|+|ZT |)/2, to have
symmetric measure of similarities between image pairs. Spectral clustering
is then performed on A to partition X into clusters.

2.1.2. Hierarchical Clustering

We apply the proposed spectral clustering approach in a hierarchical man-
ner to generate K subclusters. At the first level, the affinity matrix A is
computed for the entire image set X; and the number of clusters is the same
as the number of classes. At the subsequent level l > 1, a cluster from the
previous level, indexed by kl−1, is sub-clustered by computing the affinity
matrix for the images within this cluster. The number of sub-clusters is set
to ⌊Nkl−1

/(ηC1/l)⌋, where Nkl−1
denotes the number of images in cluster kl−1

and η is a scaling constant. If the number of sub-clusters is not larger than
1, this cluster kl−1 is not sub-clustered. Assume we choose to have L levels
of hierarchy, and a total of K subclusters {Sk : k = 1, ..., K} are generated
at the last level L (excluding those generated at the previous levels). These
K subclusters are then the final outputs from this stage.

2.2. Basis Representation

With the subclusters generated, given a test image x, the second stage
of our LSRE method is to obtain the basis representations of x based on the
subclusters {Sk : k = 1, ..., K}. In other words, we would like to approximate
x by using each subcluster Sk as a reference dictionary (illustrated in Fig-
ure 4a-c). A subcluster-based approximation, i.e. basis representation, can
then be considered as a base classifier for x. While there are many sparse
representation algorithms (Wright et al., 2010) well suited for this purpose,
we adopt the LLC model mainly due to its efficiency.
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Formally, we formulate the following objective function for basis repre-
sentation from the subcluster Sk:

min
px,k

∥x− S̄x,kpx,k∥2 + λ∥dx,k ⊙ px,k∥2

s.t. 1Tpx,k = 1, ∥px,k∥0 ≤ C2

(7)

where S̄x,k ∈ RH×Nx,k is the reference dictionary, constructed by concate-
nating the feature vectors of images in Sk that are from different subjects
as x, and Nx,k denotes the number of images in S̄x,k. Images from the same
subject as x are excluded to ensure complete separation between the test and
reference data. Here dx,k ∈ RNx,k contains the pairwise Euclidean distances
between S̄x,k and x to incorporate the locality constraints. The coefficient
vector px,k ∈ RNx,k is the basis representation of x from the subcluster Sk. It
is expected to be C2-sparse derived from the top C2 similar reference images,
and is derived analytically in the same way as our solution for Eq. (1). The
approximation output of x is S̄x,kpx,k from the subcluster Sk. If using the
basis representation px,k as a base classifier, x can be classified by finding the
class of images assigned the highest total weight:

argmax
y

pTx,kIx,k,y (8)

where y ∈ {1, ..., Y } denotes the class label with Y as the number of classes.
Ix,k,y ∈ RNx,k indicates the indices of reference images of class y, with value
1 in the corresponding elements and 0 elsewhere.

2.3. Representation Fusion

With the set of basis representations {px,k : k = 1, ..., K}, the third stage
of our LSRE method is to fuse the basis representations to obtain the class
label of the test image x. Our design motivation for this stage is as follows.
Intuitively we consider weighted combination of the outputs from the base
classifiers as the final classification result. The problem is then how to de-
termine the weights. In our setting, we hypothesize that by approximating
the test image x from the basis representations, the approximation coefficient
can be used as the weights for fusion. We also expect sparsity in the approxi-
mation so that only the top related basis representations would contribute to
the fusion. This is conceptually similar to a subtype of the multi-atlas algo-
rithms that the multiple atlases are fused using various sparse representation
techniques (Zhang et al., 2012; Liao et al., 2013; Song et al., 2014a). However,
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Figure 4: Illustration of basis representation and representation fusion. (a) indicates a test
image x of class 1. (b) shows three subclusters. The first two subclusters each contains
an image (gray square) from the same subject as the test image. They are thus removed
from the reference dictionaries. The images with dashed outline are the most similar ones
to the test image from each subcluster, and are used to generate the basis representation.
(c) shows the approximation outputs. A larger distortion, i.e. larger difference between
the approximated image and the test image, is expected with a more distant subcluster.
(d) represents the approximation of x from the top two similar basis representations. (e)
illustrates the computation of classification probabilities Px,1 and Px,2 by fusing the basis
representations based on the approximation- and distribution-based fusion weights w and
u. The final class label then corresponds to the class with the highest probability.

there seems no existing approach adapting the LLC model for fusion. Since
LLC is highly efficient and naturally supports sparse approximation from top
similar bases, we incorporate it into our design of the approximation-based
weight vector. Furthermore, while some basis representations might produce
very good approximation of x, the corresponding labels derived using Eq. (8)
might actually be incorrect. We would thus like to estimate the reliabilities
of the base classifier outputs from the individual basis representations. Our
hypothesis is that subclusters containing a balanced mixture of image classes
would be less discriminative than subclusters with images mainly a single
class, and hence the corresponding base classifier output will be less reliable.
We design a distribution-based weight vector to represent this reliability es-
timation. Illustration of this stage is shown in Figure 4d-e.
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2.3.1. Approximation-based Fusion Weights

Given the basis representations {px,k : k = 1, ..., K}, we formulate the
following objective function to approximate x:

min
wx

∥x− Vxwx∥2 + λ∥dx ⊙ wx∥2

s.t. 1Twx = 1, ∥wx∥0 ≤ C3

(9)

where the reference dictionary Vx ∈ RH×K is constructed by concatenating
all approximations of x from the K basis representations: Vx = {S̄x,kpx,k :
k = 1, ..., K}. The pairwise Euclidean distances between the approximations
Vx and x are contained in dx ∈ RK , incorporating the locality constraints.
The coefficient wx ∈ RK represents the weights of fusion, and is obtained
analytically in the same way as our solution for Eq. (1).

In the objective function, the first term encourages a close approximation
of x, and the second term penalizes higher weights to basis representations
that are more distant from x. We also choose to impose a C3-sparsity con-
straint on wx so that only the top C3 similar approximations of x would be
involved. With this formulation, we expect that higher weights would be
assigned to basis representations that are more related to x. In other words,
assume x exhibits similar image features to the subcluster Sk. We would
expect x to obtain a good approximation from Sk, i.e. a highly related basis
representation px,k. Thereafter, this basis representation is also expected to
have a high contribution towards approximating x during fusion, hence a
large weight value in wx.

2.3.2. Distribution-based Fusion Weights

We define a second weight vector, ux,y, to estimate the reliabilities of
the basis representations {px,k : k = 1, ..., K} in classifying x as class y,
based on the distribution of image classes in the subclusters. Consider that
a subcluster Sk normally contains a mixture of images from different classes.
The base classifier output of class y using px,k would be quite reliable if the
images in Sk (to be exact, S̄x,k) are mostly from class y. The reliability would
degrade gradually as the number of images from the other classes increases.
In addition, if the images in Sk (i.e. S̄x,k) are equally distributed among
the Y classes, it would imply that Sk represents a localized region in the
feature space that different classes are indistinguishable. The reliability of
classification using px,k would thus be lower than the case where the images
belong to only a small number of classes.
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With these considerations, we define the kth element ux,k,y of the weight
vector ux,y as:

(1T Ix,k,y/Nx,k) log(1 + σ{1T Ix,k,y}Yy=1) (10)

where the first term indicates the percentage of class y images in S̄x,k, and
log(·) measures the standard deviation σ among the numbers of images be-
longing to the various Y classes. With a higher percentage and larger stan-
dard deviation in the distribution of image classes, the reliability of the basis
representation px,k to classify x as class y would be higher.

2.3.3. Weighted Classification

We finally compute the classification probabilities with a weighted fusion
approach. Specifically, the classification probability of x belonging to class y
is defined as:

Px,y =
K∑
k=1

pTx,kIx,k,ywx,kux,k,y (11)

where pTx,kIx,k,y is the classification probability derived with the basis repre-
sentation px,k as a base classifier (described in the previous section). Such
K probabilities are then weighted combined with the approximation- and
distribution-based weights wx,k and ux,k,y. The test image x is then classified
to the class with the highest probability: argmaxy Px,y.

3. Dataset and Implementation

We used the ILD database (Depeursinge et al., 2012a) in this study. The
database contains 113 HRCT images, and altogether 2062 2D regions-of-
interest (ROIs) manually annotated with 17 ILD tissue class. The annotation
was performed by two radiologists with 15 and 20 years of experience. Fol-
lowing the setup in (Depeursinge et al., 2012a,b; Song et al., 2013, 2014c), we
selected the ROIs belonging to five major ILD tissue classes: normal (NM),
emphysema (EM), ground glass (GG), fibrosis (FB) and micronodules (MN).
We divided the axial slices into a grid of half-overlapping image patches with
31× 31 pixels. The image patches with centroids inside the annotated ROIs
were included in our experimentation. Our dataset thus comprised a total
of 23131 image patches from 93 HRCT images / subjects, with 6438 NM,
1474 EM, 2974 GG, 4396 FB, and 7849 MN image patches. The numbers of
ROIs belonging to the various tissue classes are 135, 54, 353, 386 and 265,
annotated in 12, 5, 35, 35 and 16 images, respectively.
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Each image patch was thus an “image” to be classified to one of the five
ILD tissue classes (Y = 5). The texture-intensity-gradient (TIG) feature vec-
tor (Song et al., 2013) was used to describe each image. The feature vector is
176-dimensional (H = 176) containing three types of information: rotation-
invariant local binary patterns based on Gabor-filtered images, intensity his-
togram, and histogram of oriented gradients with multiple coordinates. This
feature vector was specifically designed for the ILD classification problem
and showed good performance previously (Song et al., 2013, 2014c,b). To
use a consistent test setup with our previous studies (Song et al., 2014c,b)
for convenient performance comparison, we divided the dataset sequentially
into four subsets of similar numbers of subjects and a leave-one-subject-out
testing scheme was then performed for each subset. Note that due to the
small number of subjects of the EM class, three of the five subjects were
duplicated so that each subset contained two EM subjects.

In our experiments, we set the following parameters: the parameter bal-
ancing the approximation term and distance term λ = 1e − 2, the sparsity
constants C1 = C2 = 5 and C3 = 20, the number of levels of subclustering
L = 6, and the scaling factor to determine the number of clusters η = 20.
During our empirical study, we experimented with various possible parameter
settings on each subset. The set of values that provided good classification
for all subsets was then used as the best parameters to evaluate our method
performance. Our design choice mainly involved the ranges of possible pa-
rameter settings. In particular, the default value of λ used in existing LLC-
based studies was 1e − 4; we thus experimented with λ = 1e − 1 to 1e − 4.
The sparsity constants C1, C2 and C3 were related to sparse approximation
of image features, and we found that with the standard sparse representation
classifier, a sparsity constant of 10 provided the best performance; we thus
experimented with values between 5 and 25. The parameters L and η were
simply set according to C1 and C2, with L = C1+1 and η = 4C2, so that each
subcluster at the final level would contain enough number (varying around
4C2) images for sparse approximation.

It is worth mentioning that the selection of the five tissue classes was
motivated by the fact that they were the most common tissue patterns in
ILDs (Depeursinge et al., 2012a) and the existing studies for this database
focused on these five tissue classes. We adopted the same aim of study so that
we could compare with the state-of-the-art directly. The remaining twelve
tissue classes include consolidation (12 subjects), bronchial wall thickening
(1 subject), reticulation (10 subjects), macronodules (5 subjects), cysts (1
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Table 1: Confusion matrix of ILD classification.

Ground Prediction
Truth NM EM GG FB MN
NM 0.885 0.045 0.010 0.007 0.054
EM 0.182 0.796 0.022 0.000 0.000
GG 0.069 0.000 0.800 0.068 0.064
FB 0.007 0.028 0.059 0.854 0.053
MN 0.034 0.000 0.046 0.048 0.872

subject), peripheral micronodules (5 subjects), bronchiectasis (5 subjects),
air trapping (1 subject), early fibrosis (1 subject), increased attenuation (2
subjects), tuberculosis (1 subject), and pcp (2 subjects). It would be in-
teresting to see how our method would extend to more classes, especially
consolidation and reticulation.

4. Results and Discussion

4.1. Overall Performance

Table 1 shows the confusion matrix of the classification results. Most of
the tissue classes obtained higher than 80% classification rates. 18.2% of EM
images were misclassified as NM while few EM images were misclassified as
the remaining three classes. This can be explained by the large inter-class
ambiguity, i.e. visual similarity, between the EM and NM images, as shown
in Figure 1. The NM images exhibited high similarity with both EM and
MN images, hence the misclassification of NM images was mainly among the
EM and MN images. Another observation is that GG, FB and MN images
were rarely misclassified as EM. This could be explained by the small number
of EM images compared to the other classes. The small number implies a
lower probability of EM images selected for basis representation and a lower
distribution-based weight of the EM class, and hence a lower probability of
labeling the other classes as EM. Table 2 summarizes the classification recall,
precision and F-score of each tissue class. Overall, the results show relatively
balanced performance among the different tissue classes. Note that while the
rates of misclassifying the other classes as EM were low, the precision of EM
was low affected by the small number of EM images.
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Table 2: Recall, precision and F-score of ILD classification.

NM EM GG FB MN
Recall (%) 88.5 79.6 80.0 85.4 87.2

Precision (%) 89.1 70.0 79.0 85.2 89.3
F-score (%) 88.7 74.5 79.5 85.3 88.3

As described in Section 3, we set the balancing parameter λ = 1e − 2,
sparsity constants C1 = C2 = 5 and C3 = 20, number of levels L = 6 and
scaling factor η = 20 for subclustering. We found that the classification per-
formance decreased gradually with smaller λ. The value of λ was especially
important for representation fusion, and a small λ = 1e − 4 caused 4.7%
reduction in average F-score. The effects of λ were smaller for subcluster
generation and basis representation, with reduction of 1.4% and 2.1%, re-
spectively. Our method performance was quite insensitive to the sparsity
constants C1, C2 and C3, with a maximum of 1.1% decrease in average F-
score when various values between 5 and 25 were tested. Changes in the
number of levels L also resulted in minor performance differences with 0.8%
decrease in average F-score when L = 3. When the subclusters were rather
small with η = 10, the average F-score was reduced by 2.2%, indicating the
need of having relatively large number of images in each subcluster.

The performance of our LSRE model was compared with the existing
methods reported for ILD classification: (i) LF (Depeursinge et al., 2012b),
which used localized features with the SVM classifier; (ii) PASA (Song et al.,
2013), which was based on sparse representation with reference adaptation;
(iii) BMSR (Song et al., 2014c), which was based on sparse representation in
an AdaBoost construct; and (iv) LMLE (Song et al., 2014b), which was based
on sparse representation in a sub-categorization model and was the state-of-
the-art in patch-wise ILD tissue classification. The latter three approaches
used the same TIG feature vector as in this study, hence the comparison with
them demonstrated the effect of our LSRE model. The comparison with LF
reflected the performance difference of the overall framework. We note that
the results of LF were obtained directly from the paper (Depeursinge et al.,
2012b), which used a slightly different selection of images from our dataset.
For a fair comparison, PASA and BMSR were rerun to follow the same leave-
one-subject-out test setup as this study; and the parameter settings followed
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Figure 5: Differences in recall and precision between our LSRE model and the other
methods reported for ILD classification.

those reported in these studies.
Figure 5 shows the differences in recall and precision between our LSRE

model and the compared approaches, in which positive numbers indicate im-
provement of LSRE over the other approaches. The comparison shows that
LSRE performed the best among the compared approaches. Compared to
LMLE, although LSRE obtained slightly lower recall for the FB class, there
were also fewer images misclassified as FB (including 11.1% of EM images).
With a lower precision for MN, LSRE achieved more balanced results among
the five tissue classes (6.1% standard deviation in F-score for LSRE vs. 7.8%
for LMLE). LSRE also achieved more balanced results compared to BMSR
and PASA, with 3.6% and 6.4% reductions in standard deviation of F-score.
Recall that LMLE uses large margin learning for fusion of base classifiers.
The advantage over LMLE suggests that while LSRE does not involve dis-
criminative learning, it could actually obtain higher performance with the
subcluster-based representation and fusion. The subclusters generated by
LSRE can be used as base classifiers with sparse representation and a rela-
tively uncomplicated fusion algorithm is required. On the other hand, LMLE
is based on sub-categorization of individual classes separately; and the sub-
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categories would not provide discriminative information between classes and
the fusion component is thus particularly important for classification.

BMSR is also an ensemble classifier, however, its subclusters are created
with random partition and the number of subclusters is much smaller (about
3% of that in LSRE); its base classifier is the L0 regularized sparse repre-
sentation; and the fusion of base classifiers is based on a boosting algorithm.
The improvement of LSRE over BMSR thus demonstrates the advantage of
our overall method design. PASA is similar to the standard sparse represen-
tation algorithm, but involves adaptation of the reference data to the test
images. The advantage over PASA implies that our ensemble model was
more effective than using a global sparse representation classifier. Finally,
our method is completely different from LF, which uses a different feature set
and the SVM classifier. This comparison could however be biased since we
used a different subset of the ILD database from LF. In particular, the two
datasets contained different numbers of images but had very similar distri-
butions of images among the five tissue classes. We would thus like to refer
the readers to Figure 6 for comparison between SVM and LSRE, and show
the comparison with LF as a general view of our method performance in the
area of ILD tissue classification.

We also compared with the standard classifiers that are popular in med-
ical imaging, including the kNN based on Euclidean distance, LMNN, SVM,
SVM-KNN, sparse representation classifier (SRC) based on L0 regulariza-
tion, the LLC model, and the random forest (RF) classifier. For all these
approaches, we used the same TIG feature vector and leave-one-subject-out
test setup as our LSRE model. The best performing parameters were set
for each classifier: three nearest neighbors for kNN and LMNN, polynomial
kernel for SVM and SVM-KNN (order of 3 and regularization parameter
C = 1.6), 50 nearest neighbors for SVM-KNN, 10-sparsity for both SRC and
LLC, the balancing parameter for LLC as 1e− 2, and 150 trees for RF.

As shown in Figure 6, LSRE achieved large improvement over the com-
pared approaches. The kNN and LMNN classifiers are nearest neighbor-
based methods. The kNN classifier did not work well since an image could
appear similar to images of different classes, due to large inter-class ambi-
guity. While LMNN includes a learning-based distance metric, the learning
algorithm was monolithic and affected by the large number of contradicting
constraints. SRC and LLC are sparse representation models. SRC did not
gain advantage over kNN, mainly due to the feature space complexity causing
selection of reference images from the wrong class for sparse approximation.
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Figure 6: Differences in recall and precision between our LSRE model and the other
popular classifiers.

LLC performed better than kNN and SRC, implying that incorporating the
locality constraints into the approximation objective helped to accommodate
the feature space complexity. The main difference between LSRE and LLC is
that we used LLC at the subcluster-level to compute the basis representations
and the LLC-based base classifiers are fused to obtain the final classification.
The advantage of LSRE over LLC thus implies that our ensemble classifier
was more effective than using a single LLC based on the entire reference set.

RF is a popular ensemble classifier based on tree bagging. Different from
LSRE, RF creates the subclusters based on random sampling, uses decision
tree as the base classifiers, and applies majority voting to obtain the fused
classification output. RF also involves the additional random selection of
feature subsets for further improvement. LSRE outperformed RF largely,
and we suggest the essential cause was that the subclusters in our model
were generated by clustering. The base classifiers built on these subclusters
adapted to the local distributions in the feature space, and fusing these local
classifiers could provide more accurate results than those created based on
random subsets. Among the compared approaches, SVM is the most different
classifier from our LSRE model. While SVM is typically a highly discrimi-
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native classifier, with large intra-class variation and inter-class ambiguity, it
could become over-fitted to the training data. The overfitting problem could
be partially addressed by training local classifiers based on the nearest neigh-
bors of the test data as in SVM-KNN, which obtained higher performance
over the standard SVM. Classification with SVM-KNN however involved a
single local classifier. The advantage of LSRE over SVM-KNN thus indicates
the benefit of using an ensemble of base classifiers.

We further evaluated the statistical significance of performance improve-
ment between our LSRE method and the compared approaches (excluding
LF). A label vector containing 0 and 1 was computed from the classification
outputs of each method, with 1 denoting correct classification and 0 oth-
erwise. The label vector of LSRE was paired with that of each compared
approach to compute the p-value using one-tailed paired t-test. The null
hypothesis was that LSRE produced the same classification accuracy as the
paired approach. We obtained p-value of 0.0155 when compared with LMLE,
and< 10−25 for comparisons with all the other approaches. The p-values were
thus all less than 0.05 and indicated that our method achieved statistically
significant improvement. Note that LF was not included in this evaluation,
since we benchmarked with the reported results in Depeursinge et al. (2012b)
directly and did not have the classification outputs of the images.

We would like to mention that the drawback of our LSRE method is
the relative complexity. Our method contains three components: subcluster
generation, basis representation, and representation fusion. Such an ensemble
classifier design is notably more complicated than kNN and SVM, and the
global sparse representation-based classifiers (SRC, LLC and PASA). On the
other hand, BMSR, LMLE and RF are also ensemble classifiers, and they
can be considered as containing three components of similar purposes but
different algorithms. Compared to these ensemble approaches, our LSRE
method involves a more complicated design of subcluster generation based
on spectral clustering. However, LSRE does not require a training step to
fuse the basis representations; and the training in LMLE can be quite slow
for large datasets. At test time, LSRE is also faster than BMSR and LMLE
mainly due to the incorporation of LLC, requiring about 0.06 second to
classify an image vs. 0.93 and 0.4 seconds.

4.2. Evaluation of Subcluster Generation

Our subcluster generation method was compared with four other ap-
proaches for reference partition: (i) SSC (Elhamifar and Vidal, 2009), based
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Figure 7: The R-index and uniformity values of the various clustering approaches.

on spectral clustering with the affinity matrix derived using L1-regularized
sparse representation with C1-sparsity; (ii) the standard spectral clustering;
(iii) the k-means clustering; and (iv) random partition of disjoint clusters.
All these approaches were conducted in the same hierarchical structure as in
our subclustering method. Our method is most related to SSC since both
involve customized affinity matrix with spectral clustering; and the main dif-
ference is our LLC-based approximation. The random partition is included
since it is often used in ensemble classification.

First, we computed the R-index (Himberg et al., 2004) to measure the
clustering qualities, which used the ratio between the within-cluster distances
and the minimum between-cluster distances to quantify the compactness of
and separation between clusters. A smaller value indicated a better cluster-
ing. As shown in Figure 7, our method obtained the lowest (best) R-index.
The other three clustering methods obtained similar R indices. The ad-
vantage of LSRE over SSC was mainly attributed to the additional locality
constraints incorporated into the sparse approximation. The random par-
tition did not explore the feature space characteristics and resulted in the
highest R-index.

The R-index, however, did not include the class label as a factor. While
we expected that a subcluster could contain a mixture of different classes,
it would help the classification performance if the subclusters were relatively
uniform, meaning a subcluster contained images mostly from a single class.
We thus computed another uniformity index, as the average ratio between
the number of images of the majority class and the number of images in each
subcluster. A larger uniformity value was better. As shown in Figure 7,
our method obtained the highest uniformity. It was interesting that SSC
provided the lowest uniformity while k-means obtained the highest, among
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Table 3: Average F-score of ILD classification and execution time in seconds, of the various
clustering approaches.

LSRE SSC Spectral k-means Random
F-score 0.859 0.813 0.835 0.827 0.683
Time (s) 268 1900 223 9.8 0.4

the other three clustering algorithms. This could be accordant with our
results in the previous section that SRC did not gain advantage over kNN.
With large intra-class variation and inter-class ambiguity, the basic sparse
representation would not be more effective than direct distance computation.
Finally, as expected, the random partition resulted in the lowest uniformity.

Table 3 summarizes the resultant classification F-score averaged among
the five tissue classes, and the execution time of subcluster generation. In
all compared approaches, only the subcluster generation stage was replaced
and the same processing as LSRE was applied for stages two and three. Our
LSRE model obtained the highest F-score compared to the other four ap-
proaches. The benefit of having clustering-based reference partition over the
random approach was evident. SSC was particularly slow due to the L1-
regularized sparse approximation, and it was less effective when compared
to the standard spectral and k-means clustering. Note that the subcluster
generation process was required to run only once per subset of data (recall we
divided the dataset into four subsets for faster testing) even in a leave-one-
subject-out setting. This was because this stage was unsupervised without
involving any class labels, hence all images could be included during cluster-
ing. Consequently, although our method was much slower than k-means, the
impact on the overall classification efficiency was low.

4.3. Evaluation of Basis Representation

The basis representation stage was evaluated by comparing our method
with kNN, SRC with L0 regularization (SRC-0) and L1 regularization (SRC-
1). With kNN, equal weights were assigned to the top C2 similar reference
images from each subcluster as the basis representation. With SRC-0 and
SRC-1, our LLC-based approximation method was replaced with the stan-
dard sparse approximation with C2-sparsity. The subcluster generation and
representation fusion stages were kept the same as our LSRE model.
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Figure 8: The average classification accuracies of various subsets of basis representations.

We first measured the average classification accuracy of the base classi-
fiers based on various subsets of the subclusters. Specifically, four subsets
were measured: All meaning the results from all subclusters, i.e. all ba-
sis representations, were averaged; Top-20, Top-10 and Top-1 meaning that
the results from the subclusters producing the top 20, 10, or 1 best approx-
imations were averaged. Note that the top approximations were selected
individually for each test image based on the Euclidean distances between
the approximation outputs and the test image.

As shown in Figure 8, Top-10 and Top-20 obtained similar accuracies,
while the performance dropped with Top-1 and the lowest accuracies were
obtained with All. This suggests that fusing the top 10 or 20 basis repre-
sentations would provide better classification than using the top 1 or all of
the basis representations. The classification accuracies of Top-10 and Top-20
were however quite low, implying that simply averaging the base classifiers
would not achieve good classification. Another finding was that the accura-
cies of kNN and SRC-0 were close to our basis representation method while
SRC-1 was much less accurate. This suggests that by fixing the number of
neighbors in the approximation constraints (our method and SRC-0) and
distance computation (kNN), the base classifiers were more effective than
having varying number of nearest neighbors (SRC-1).

Table 4 lists the classification F-score averaged among all tissue classes,
and the average time required to compute the basis representation for each
test image. Our LSRE model shows clear advantage in classification per-
formance compared to the other approaches. Different from the average ac-
curacies of the basis representations (Figure 8), SRC-1 achieved the second
highest F-score. This was attributed to the representation fusion stage, which
combined the basis representations based on approximation- and distribution-
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Table 4: Average F-score of ILD classification and execution time in seconds, of the various
basis representation approaches.

LSRE SRC-0 SRC-1 kNN
F-score 0.859 0.764 0.786 0.775
Time (s) 0.05 0.13 0.82 0.05

based weights, rather than simply averaging them. For the same reason, our
method achieved larger performance gain over the compared approaches than
the average accuracies shown in Figure 8. In addition, the advantage of our
LSRE model over SRC-0 and SRC-1 indicates the benefit of incorporating
locality constraints into the sparse approximation for basis representation.
Another advantage of our method was that the LLC-based formulation could
be efficiently solved analytically. This was evident by the similar execution
time between our method and kNN.

4.4. Evaluation of Representation Fusion

We compared our representation fusion method with the standard and
highly related fusion techniques, including: (i) kNN, with which equal weights
were assigned to the top C3 basis representations for fusion; (ii) SRC-0,
which computed the fusion weights based on sparse approximation with L0
regularization; and (iii) SRC-1, which used L1 regularization to generate
the fusion weights. These compared approaches were used to replace our
approximation-based fusion weights only and the distribution-based weights
were still incorporated. In addition, we also evaluated the classification per-
formance with approximation-based weights only (Approx), to analyze the
effect of the distribution-based fusion weights.

For ensemble classification to achieve higher accuracy than using single
classifiers, one of the main criteria is that the base classifiers need to provide
diverse performance. In other words, it is more desirable if the base classifiers
provided different classification probabilities rather than a uniform predic-
tion, and different base classifiers would perform best for different subsets of
the data. We thus measured the diversity using the following two metrics.
First, we computed the entropy (Kuncheva and Whitaker, 2003) to quantify
the level of differences in classification outputs between the base classifiers.
Second, we checked the distribution of base classifiers that provided accurate
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Table 5: Entropy and standard deviation measuring the diversity of base classifiers.

LSRE SRC-0 SRC-1 kNN
Entropy 0.098 0.050 0.085 0.098
Std 0.0069 0.0070 0.0078 0.0069

Figure 9: Distributions of selected base classifiers with accurate classifications, using
LSRE, SRC-0, and SRC-1. The distribution of kNN is the same as (a). The x-axis
represents the index of base classifiers / subclusters. The y-axis is the number of images
accurately classified by the corresponding base classifier.

classification outputs. The evaluations were limited to the base classifiers
that were selected for fusion. Note that our method and kNN would obtain
the same entropy and distributions since our model selected the top C3 base
classifiers based on the kNN outputs.

Table 5 lists the entropy values of the various approaches. A larger value
implied that the base classifiers were more independent and hence more di-
verse. The results show that our method produced the largest entropy while
SRC-0 produced the lowest. In addition, as shown in Figure 9, the selection
of base classifiers exhibited quite different distributions among the compared
approaches. Table 5 lists the standard deviations of the distributions, with
the cumulative distribution normalized to 1. A lower standard deviation
means a more scattered distribution of base classifiers with accurate outputs,
hence a higher diversity. Overall, the results show that our method provided
the highest diversity among the compared approaches (same as kNN). This
diversity property would then contribute to better classification performance
achievable by our LSRE model compared to SRC-0 and SRC-1.

Table 6 shows the average F-score, and the average time required to
derive representation fusion for each test image, with the various fusion tech-
niques. The lower F-score using Approx indicates the benefit of including
distribution-based fusion weights. The advantage of LSRE over kNN suggests
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Table 6: Average F-score of ILD classification and execution time in seconds, of the various
representation fusion approaches.

LSRE SRC-0 SRC-1 kNN Approx
F-score 0.859 0.705 0.793 0.787 0.767
Time (s) 0.014 0.020 0.022 0.013 0.014

the effects of including the approximation-based weights. In addition, SRC-0
and SRC-1 obtained low F-scores. This is because with sparse representation,
good approximation could be achieved by combining basis representations of
different classes, and fusing them could often lead to misclassification. The
improvement of LSRE over SRC-0 and SRC-1 suggests that by incorporating
the locality constraints, our fusion method was more effective in identifying
basis representations that were indeed representative of the test image. In
addition, representation fusion was quite fast with any of these compared ap-
proaches, since the reference dictionary was small with K vectors (K being
the number of subclusters).

4.5. Evaluation of ROI Classification

Our LSRE model was applied to classify image patches of 31× 31 pixels,
hence the previous evaluations were conducted at the image patch-level to
demonstrate the effectiveness of LSRE. To further analyze the clinical rel-
evance, we also evaluated the classification performance at the ROI-level.
An ROI was classified by summing the classification probabilities, Px,y in
Eq. (11), of the divided patches, and choosing the class with the highest
probability. While we expect incorporating spatial relationships (Song et al.,
2014a) or high-level feature descriptions (Lu et al., 2011, 2014) would help to
improve the classification accuracy, in this study, we used the simple majority
voting to focus our method design on the LSRE model.

Table 7 shows the classification results at the ROI-level. Note that al-
though some measures are lower than the corresponding values in Table 2, it
does not mean that more image patches were misclassified with the majority
voting step. In fact, we found that with the majority voting, higher recall,
precision and F-score were obtained for all five tissue classes at the image
patch-level, with on average 5.6% improvement in F-score for each class. The
ROIs were however of varying sizes, and the ROI-level performance measures
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Table 7: Recall, precision and F-score of ROI classification.

NM EM GG FB MN
Recall (%) 91.9 88.9 76.8 86.8 73.2

Precision (%) 74.3 87.3 77.9 85.2 84.3
F-score (%) 82.1 88.1 77.3 86.0 78.4

would be affected by small and misclassified ROIs.
We also compared with the state-of-the-art result of ROI-level ILD tissue

classification (Asherov et al., 2014), which is based on bag of visual words fea-
ture representation and SVM classifier. The compared study was conducted
on a different subset (91 subjects with 1018 ROIs) of the ILD database from
ours (93 subjects with 1193 ROIs), and the two sets of ROIs were distributed
differently among the five tissue types. Nevertheless, this comparison gave a
general view of the effectiveness of our method. Our method achieved higher
F-scores for all five tissue types with on average 2.6% improvement of each
type. An exception was that lower precision was obtained for the EM type
(-6.9%), mainly because there were fewer EM ROIs in our dataset.

We note that to assess if a method can be of real clinical interest, typi-
cally the classification results are analyzed based on intra- and inter-observer
agreements. However, such statistics are not available for the ILD dataset.
A similar study of ILD tissue classification (Sluimer et al., 2006) reported
intra- and inter-observer agreements of 89% and 77% classification accu-
racy. Although a different dataset was used, we think that these statistics
could be similarly applicable to our study given the similar problem domain.
Our average classification accuracy at the ROI-level was 81.5%, which was
thus comparable to the expert readings. In addition, when creating the ILD
database, the radiologists spent on average one hour per case to identify
ILD cases with high confidence (Depeursinge et al., 2012a). Although our
method was applied to the annotated ROIs rather than the entire image, it
required only about 16 seconds per case at runtime. Overall, considering the
effectiveness and efficiency of our method, we suggest that our method can
be useful as a second opinion to assist radiologists in decision making.
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5. Conclusions and Future Work

We present a Locality-constrained Subcluster Representation Ensemble
(LSRE) model to classify HRCT lung image patches of five ILD tissue classes.
LSRE is a new ensemble classification model, with three main differences
from the existing ensemble-based approaches. First, data subsets are gener-
ated using hierarchical spectral clustering with a sparse approximation-based
affinity matrix. Second, the base classifiers are fused with data-adaptive
approximation- and distribution-based weights. Third, the locality con-
straints are incorporated into each stage of our model to obtain effective
sparse approximation and improve the model efficiency. Our ensemble-based
design helps to tackle the difficulties in accurate classification caused by
the intra-class variation and inter-class ambiguity in the feature space. We
evaluated our method on a large ILD database, and demonstrated good per-
formance improvement over the often used classifiers.

Our results show that the clustering-based subcluster generation is very
important to the classification performance. We thus plan to investigate if
further enhancing the clustering method, possibly by incorporating multi-way
clustering (Ng et al., 2001) or the affinity propagation algorithm (Frey and
Dueck, 2007; Zhan et al., 2009), will improve the classification performance
in our future work. Our results also show that the LLC-based method is
much more effective than the standard L0 and L1 regularized sparse approx-
imation algorithms for basis representation and fusion. Our another future
work is thus to investigate improving the LLC-based method, possibly with
more advanced distance functions. Finally, besides customized parameter
settings, our model does not involve any application-specific design and is
generally applicable to multi-class classification. We will investigate apply-
ing the LSRE model to other medical image classification problems, such as
the differentiation of various stages of dementia, in our future work.
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