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Abstract—The high thought put and increasingly accumulated 

data size of the 3D neuroimaging datasets have posed great 

challenges for neuroimaging data retrieval. To efficiently manage 

such large datasets, we proposed a volumetric congruent local 

binary pattern (vcLBP) algorithm for 3D neurological image 

retrieval. The vcLBP-based feature descriptor could describe the 

volumetric imaging data with higher robustness and meanwhile 

effectively compress the feature space by using the unique 

rotation, reflection and translation invariant patterns. We 

evaluated the proposed vcLBP algorithm using 132 sets of 3D 

positron emission tomography (PET) brain imaging data and the 

preliminary results suggested that our approach could effectively 

reduce the feature dimensions while achieving better results than 

other 3D feature descriptors. This vcLBP algorithm has a 

potential to be widely used in many other applications, such as 

image classification, content analysis, and data mining. 
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I. INTRODUCTION 

Functional neuroimaging, such as positron emission 
tomography (PET) and single photon emission computed 
tomography (SPECT), provides important insights into 
neuroscience and is a fundamental component of clinical 
neurological diagnosis. Instrumentation advances have led to 
the introduction of PET-CT scanners into clinical practice and 
with these advances there has been a marked increase in the 
size of the neuroimaging datasets. Such large neuroimaging 
datasets have posed great challenges in image management and 
retrieval. Traditional keyword-based image retrieval is time-
consuming and prone to errors. In addition, the visual and 
physiological features cannot be comprehensively described by 
keywords. Therefore, efficient management and analysis of 
such large datasets have prompted research in the field of 
content-based image retrieval (CBIR) [1].  

Various studies have been reported on neuroimaging data 
retrieval. Kim et al. [2] proposed a dynamic brain PET retrieval 
system using the volume of interest (VOI) based pixel-wise 
tissue time activity curve (TTAC) clustering approach. Their 
approach focused on dynamic data and relied heavily on VOI 
segmentation. Unay et al. [3] developed a structure-based 
region of interest (ROI) retrieval system for brain Magnetic 
Resonance (MR) images. They used the local binary patterns 
(LBP) descriptors in their study and the results suggested that 
the dominate LBPs were more robust and efficient than the 
conventional LBPs. Batty et al. [4] designed a brain PET image 

retrieval system based on the texture features extracted by 
Gabor filters from ROIs. Both Unay’s and Batty’s systems [3]-
[4] were based on the 2D feature descriptors. However, the 
neuroimaging data are commonly collected in 3D format and 
these 2D-oriented approaches are not able to capture the 
volumetric variations in 3D imaging data. There are also 
reports on 3D neuroimaging retrieval systems. Liu et al. [5] 
proposed a 3D gray level co-occurrence matrices (3D-GLCM) 
based feature extraction approach for the retrieval of multiple 
types of neurological disorders using the disorder-oriented-
masks (DOM). Recently, Qian et al. [6] investigated four 3D 
feature descriptors, namely, 3D-GLCM, 3D-wavelet, modified 
3D-LBP and 3D-Gabor filters, and evaluated them using 100 
MR brain images. They found that 3D-LBP could achieve 
more accurate retrieval than the other three approaches and was 
also computational efficient when using a small number of 
sampling voxels in the local neighborhood. 

We believe the 3D-LBP algorithm can be further improved 
because it has two drawbacks. Firstly, the feature dimension 
increases exponentially as the number of sampling voxels 
grows. This bottleneck makes 3D-LBP impractical when using 
a large number of sampling voxels. Secondly, 3D-LBP is 
subject to rotation, reflection and spatial translation. To 
overcome these drawbacks, in this paper, we proposed a 
volumetric congruent LBP (vcLBP) algorithm, which could 
derive the unique rotation, reflection, translation invariant 
patterns based on the spatial relationships of the voxels. Our 
approach could use much less patterns to describe the 3D 
imaging data meanwhile enhance the robustness of the LBPs 
compared to the conventional 3D-LBP algorithm. 

In Section 2, we described the conventional LBP and our 
proposed vcLBP algorithms. Section 3 introduced the vcLBP-
based neuroimaging retrieval framework, followed by the 
experiments and results in Section 4. Finally, we concluded in 
Section 5.    

II. LOCAL BINARY PATTERN 

A. LBP for 2D Images 

LBP feature descriptor for 2D image data was designed by 
Ojala et al. [7]. For a monochrome texture image, a texture T in 
a local neighborhood can be defined as the joint distribution of 
the gray values of P pixels (P >1), as in  

                                            (1) 



 

where    is the gray value of the central pixel in the local 
neighborhood and               represents the gray 

values of P samples around the central pixel. All the values in 
T are then subtracted by the value of the central pixel,   , 
giving 

                                       .                       (2) 

Assuming the difference between       is independent of 

  , and       describes the overall gray tone which is not 
related to T, thus T can be approximated by 

                                   .                             (3) 

Note that the signed differences,       are not affected by 
luminance, so to achieve gray-scale invariant, only the signs of 
      rather than their exact values are considered, as in 

                                        ,                  (4) 

where        if     ; and        if otherwise. T is then 
converted into a unique decimal number that characterizes the 
spatial structure of the local binary pattern. Fig. 1 shows an 
example of an eight-sample local binary pattern. To achieve 
rotation invariant, all the unique patterns need to be identified 
(when P = 8, there are 36 unique patterns [7]), so we can find 
exactly one match for any extracted LBP and compute the 
histogram based on these unique patterns.  

 

 

Figure 1. Extract and encode a 2D LBP. 

 

B. State-of-the-art LBP Algorithms for 3D Imaging Data 

Extending the 2D LBP algorithm to 3D imaging data seems 
to be very straightforward. For a local neighborhood, one can 
simply take P equidistant voxels around the central voxel, and 
then apply thresholding and encoding to identify the local 
binary patterns. However, there are two problems. First, as the 
number of sampling voxels grows, the length of the histogram, 
i.e., the dimension of the feature vector, increases 
exponentially. For example, if we take 18 equidistant voxels to 
the central voxel, we need 2

18
 bins to record all the possibilities 

of the LBPs. If we take rotation, translation and reflection 
invariance into consideration, the possibilities can be greatly 
reduced, yet here comes the second problem which is how to 
identify the translation, rotation and reflection invariant LBPs. 
For 2D LBP, it is very trivial to identify the unique rotation 
invariant patterns because the rotation degree of freedom is 
only 1. However, for 3D images, the rotation degree of 
freedom is 3 and the number of sampling voxels for 3D-LBP is 
also much larger than that for 2D-LBP.  

Many attempts have been made to break the feature 
dimension bottleneck. Unay et al. [3] cut the 3D data into 2D 
planes. They then applied the 2D-LBP algorithm to derive the 

histograms from each of landmark planes and finally 
concatenated them into one histogram. This approach can 
greatly reduce the feature space, but it remains 2D-oriented, 
since the LBPs extracted from landmark planes cannot capture 
the inter-plane volumetric variations which are the essential to 
characterize 3D images. 

Zhao et al. [8] proposed the LBP-TOP (three orthogonal 
planes) algorithm which decomposed the local neighborhood 
volume into three orthogonal planes intersecting at the centre. 
The 2D local binary patterns were extracted from the three 
orthogonal planes and three histograms based on each of the 
planes were computed individually and then concatenated into 
a longer histogram as the final representation of input image. 
Fig. 2 illustrates the process of computing the final histogram 
using LBP-TOP. LBP-TOP can effectively reduce the feature 
dimensions. However, the LBP-TOP algorithm has several 
drawbacks. Firstly, it is not rotation/reflection/translation 
invariant. Secondly, the connection information between 
individual planes which is very important to characterize the 
local patterns is missing. Furthermore, LBP-TOP also contains 
redundant information. The intersect points of these three 
orthogonal planes, as marked by the yellow stars in Fig. 2, are 
counted twice for computing the histogram. 

 

 

Figure 2. Histogram concatenation using the LBP-TOP algorithm. 

 

Zhao et al. [8] also proposed a one-axis rotation invariant 3D-

LBP algorithm for dynamic texture analysis of facial 

expressions. However, since this algorithm is designed for 

video, it allows the frames to rotate around the timeline-axis 

only. Fehr et al. [9]-[10] introduced a frequency transform 

based approach for the approximate computation of the 

uniform LBPs. However, their uniform LBPs are data-

dependent and cannot provide complete gray-scale invariance 

[9]. To overcome these problems, they further proposed the 

rLBP which assigned the LBP to a template by calculating the 

correlation of the LBP and the fixed LBP templates of all 

angles. These templates were based on the spherical harmonic 

coefficients which also required the pre-computed discrete 

approximations of the harmonic base functions [10]. 

C. Volumetric Congruent LBPs 

The abovementioned LBP approaches for 3D data [8]-[10] 
either lose too much information or not fully support 
rotation/reflection/translation invariant LBPs. To our 
knowledge, we are the first to propose the fully 3D 
rotation/translation/reflection invariant LBP algorithm. We 
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name this algorithm the volumetric congruent LBP, denoted by 
vcLBP.  

LBP encodes a pattern into a unique number, so each bin of 
the LBP histogram represents a unique pattern. It makes no 
sense to arbitrarily integrate two consecutive bins to generate a 
bigger bin. For example, (01011111) is next to (01100000) in 
the histogram, but the patterns they represent are far from 
similar. However, it makes perfect sense to put these patterns, 
as shown in Fig. 3, into one bin. All these patterns in the braces 
(Fig. 3-b) are generated by rotating, flipping or spatially 
translating the mother pattern on the left (Fig. 3-a). In other 
words, they are congruent and they can be abstracted by the 
pattern template on the right (Fig. 3-c). 

 

  
         (a)                                                (b)                                              (c) 

Figure 3. Congruent pattern abstraction. 

 

Now the problem becomes how to find the congruent 
patterns. To prove any two geometric patterns are congruent, 
we need to show that they were related by one isometry [11], 
which is a distance-preserving map between two metric spaces. 
Therefore, we need to compare all the edges in the first pattern 
and those in the second pattern. If all of the edges in first 
pattern could be mapped perfectly to the edges in the second 
pattern, then we can conclude these two patterns are related by 
an isometry hence they are congruent.  

For one pattern A with n vertices, we can represent it by an 
n   n symmetric, distance-preserving matrix, DA, whose entry 
dA(i, j) is the distance between the i

th
 vertex to the j

th
 vertex of 

A. If there is another pattern B with same number of vertices as 
A, and satisfying 

                            dB(p(i), p(j)) = dA(i, j)                            (5) 

for all      , where p(x) is the mapping function from A to 

B, then A and B are related by  

                                       DA = PDBP
-1

                                    (6) 

where P is the permutation matrix which rearranges the order 

of vertices of A to match A up with B. We do not know P, but 

we know the eigenvalues of A and B will always be the same 

[12]. To find P, we can first decompose A and B as: 

                                        DA = QAEQA
-1

                                 (7) 

                                        DB = QBEQB
-1

                                 (8) 

where E is the diagonal matrix of eigenvalues of both DA and 

DB. Then P can be computed as: 

                                           P = QBQA
-1

                                   (9) 

If there exists a P, or in other words, the eigenvalues of DA 

DB match, then A and B are congruent. For all entries of P(x, 

y) equal to 1, p(x) maps the x
th

 vertex of A to the y
th

 vertex of 

B, i.e.: 

                                               p(x) = y                                  (10) 

Assuming n sampling voxels were considered, we should 
exhaustively test all 2

n
 possibilities of the LBPs to identify the 

unique patterns. For example, when we take 18 equidistant 
neighbors surrounding the central voxel (radius of the sampling 
sphere is 1 voxel distance, and the values of the neighbors that 
do not fall exactly on voxels are approximated by the value of 
the nearest voxel), we compute the eigenvalues for all the 2

18
 

(262,144) possible patterns from (00…0) to (11…1). We 
cluster the patterns with the same eigenvalue into one group, 
and totally 6,426 such groups are identified, each representing 
a unique pattern. This identifying process is done once only for 
each sampling setting.  

 
Figure 4. The illustration of a vcLBP-based histogram and the congruent patterns. 



 

FUNCTION feature_extraction (f(x)) 

SET  x, the 3D coordinates of a voxel in the image f(x) 

SET  b, the local binary pattern 

SET  u, the unique pattern template 

SET  t, the value of the unique pattern in the lookup table 

SET  h, an empty array storing the vcLBP-based histogram 

FOR   x = x0, …, xN,   N is the total number of voxel in f(x) 

b = B(x);    extract the local binary pattern at x 

u = U(b);    map the pattern to a unique pattern template 

t  = T(u);    read the value of the template from the lookup table 

h[t] ++;      compute the histogram 

ENDFOR 

RETURN h 
 

Figure 5. The Pseudo Code of vcLBP-based Feature Extraction. 

Unlike the 3D-LBP, we no longer translate the LBP into a 
decimal number but built a lookup table which stores the 
unique eigenvalue signatures of the unique pattern templates. 
Fig. 4 shows one example of a histogram computed from a 3D 
neurological image. The vertical axis is the number of 
occurrences of the patterns and the horizontal axis stands for 
the indices of the patterns. Several vcLBP templates and their 
corresponding bins are illustrated at the bottom of Fig. 4. 

III. VCLBP-BASED RETRIEVAL FRAMEWORK 

A. Neuroimaging Dataset 

The PET brain datasets, as summarized in Table I, were 
acquired on a CTI ECAT 951R whole body PET scanner, at 
the Department of PET and Nuclear Medicine, Royal Prince 
Alfred Hospital, Sydney. Two types of neurodegenerative 
disorders, Alzheimer’s disease (AD) and frontal-temporal 
dementia (FTD), were investigated in this study. We divided 
the dataset into two groups according to the age of the patients. 
The early-onset group contained the patients who were younger 
than 65 years old. Patients who were 65 and over were 
classified into the late-onset group.  

B. Data Pre-processing 

To reduce the impact of the unreliable standard uptake 
values in PET, the cerebral metabolic rate of glucose 
(CMRGlc) parameters were derived from raw static 3D FDG 
([

18
F]2-fluoro-deoxy-glucose) PET images with the 

autoradiographic (ARG) algorithm [13]. Arterialized-venous 
blood samples were taken at 10 min and 45 min post injection 
to calibrate a population-based input function [14]. To 
eliminate the inconsistencies between different cases, the 
generated CMRGlc parametric image volume with dimensions 
of 128×128×56 were spatially normalized to a PET brain 
template with standard dimensions of 91×109×91, using the 
SPM2 package (Wellcome Trust Centre for Neuorimaging, 
London, U.K.) [15]. 

C. Feature Extraction 

The vcLBP algorithm was used to extract the histograms 
from the spatially normalized CMRGlc images. Fig. 5 shows 
pseudocode of the algorithm for extracting a vcLBP-based 
histogram from a given image. We iterated the voxels in the 
whole image to extract the local binary patterns at every voxel 
location. For an extracted local binary pattern, we computed 
its eigenvalues and then mapped it to the corresponding 
unique pattern template and read the ranking value of that 
unique pattern template from the look up table. Subsequently, 
the element bin with that ranking value in the histogram would 
be added by 1 occurrence.  

We extracted the histograms from all the neuroimaging 
data in the dataset and then stored them in the feature 
database. When we performed the retrieval of a query, we first 
extracted the feature from the query in the same way as we did 
for imaging data in the dataset and then compared it to all the 
histograms in the feature database. 

D. Performance Evaluation 

The retrieval was conducted by the leave-one-out strategy 
on the whole dataset using query by example paradigm. The 
similarity was calculated by the Euclidean distance and the 
performance was evaluated by the average precision of the 
top-5 retrieved results. We used the diagnosis from the 
imaging studies as the ground truth. For two different 
neurological disorders, there can be a degree of overlap 
because certain brain regions could be sensitive to both 
disorders, for example, late-stage AD and FTD both exhibit a 
degenerative pattern in frontal cortex areas. To balance the 
interference of these common regions shared by different 
disorders so as to objectively describe the retrieval results, the 
following relevance criteria were used. If the query is a 
dementia case and the retrieval result is also a dementia case 
but diagnosed as a different sub-type, we then set the 
relevance score to 0.25. If the retrieval result belongs to the 
same group as the query, then the relevance score is set to 1.0. 
If the query is a dementia case and the retrieval result is a 
normal case, or vice versa, the relevance score is set to 0.  

IV. EXPERIMENTS AND RESULTS 

Table II shows the length of the histogram for each LBP 
algorithm using different numbers of sampling voxels. In this 
study, we used 18 equidistant sampling voxels around the 
central voxel to characterize the 3D local patterns. Both the 
vcLBP and the LBP-TOP could effectively reduce the feature 
dimensions. The histogram extracted by vcLBP is 8 times 
longer than LBP-TOP but 40 times shorter than 3D-LBP. Note 
the LBP-TOP algorithm takes 8 voxels from each of the three 
orthogonal planes, so literally the total number of sampling 
voxels is 24. However, these three planes intersect at 6 voxels 
which are counted twice when computing the histogram. 
Therefore, these voxels are redundant and only 18 voxels are 
actually used by the LBP-TOP algorithm. 

TABLE I.  PATIENT DATASET SUMMARY 

 EARLY-ONSET EARLY-ONSET 

Disorder  NO. of Cases 

(M : F) 

Age  NO. of Cases 

 (M : F) 

Age  

AD 37 (11:26) 34-64 16 (9:7) 66-79 

FTD 20 (13:7) 40-64 30 (16:14) 65-82 

Normal Controls 18 (5:13) 27-64 11 (9:2) 66-75 

Total 75 (29:46) 27-64 57 (34:23) 65-82 

 



 

To evaluate the effectiveness of our proposed vcLBP 
algorithm, we compared our proposed vcLBP to the LBP-TOP 
and the conventional 3D-LBP algorithms, as well as a baseline 
3D-GLCM algorithm in this study. We applied all these 
algorithms to both the early-onset and the late-onset patient 
groups.  

Table III summarizes our preliminary results. The retrieval 
performances of different disorders in different age groups 
were very different. For AD cases, the retrieval precision in 
the early-onset group was much higher (10.9% - 13.8%) than 
the late-onset group, while it was opposite for FTD cases. This 
could be explained by that the proportion of the AD cases in 
early-onset group was higher than that in the late-onset group, 
which gave more chance to retrieve an early-onset AD case. 
On the contrary, the higher proportion of FTD cases in the 
late-onset group led to a higher retrieval precision (6.5% - 
6.7%) of the late-onset FTD cases.  

Among all these four algorithms, we found vcLBP had the 
best performance and all the LBP algorithms achieved better 
results than the baseline 3D-GLCM algorithm in most cases, 
except for the 3D-LBP and LBP-TOP algorithms for the early-
onset AD retrieval, 3.6% and 2.3% lower than 3D-GLCM, 
respectively. This might be explained by that 3D-GLCM could 
preserve the gray-scale contrast while LBPs could not, thus 
3D-GLCM could outperform the LBP algorithms in rare 
occasions. However, the retrieval precisions for vcLBP were 
always higher than 3D-GLCM, and the largest difference was 
13.1% for late-onset AD retrieval.   

When we compared the three LBP algorithms with each 
other, we found that 3D-LBP was superior to LBP-TOP in 
FTD case retrieval and both of them had very similar 
performance to the vcLBP. However, for AD case retrieval, 
vcLBP achieved much higher precision than the other two.    

V. CONCLUSION 

In this paper, we presented a new feature descriptor for 3D 
imaging data, namely vcLBP. Our proposed vcLBP algorithm 
resolves the two drawbacks of the conventional 3D-LBP 
algorithm. Firstly, our vcLBP fully supports the 

rotation/reflection/translation invariant pattern templates 
which can enhance the robustness of LBPs. Secondly, the 
vcLBP algorithm can effectively reduce the feature 
dimensions. In conclusion, the vcLBP algorithm is an 
advanced feature descriptor for 3D imaging data compared to 
the conventional 3D-LBP and LBP-TOP algorithms, and it 
also performs better than the 3D-GLCM algorithm in the 
application of neuroimaging retrieval. We believe that our 
approach has a great potential to be generally applied to other 
applications, such as 3D content analysis, data mining, and 
image classification.  
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TABLE II.  THE NUMBER OF SAMPLING VOXELS AND THE LENGTH OF 

HISTOGRAM FOR DIFFERENT LBP ALGORITHMS 

Algorithm 3D-LBP LBP-TOP vcLBP 

r = 1, s = 6 26 = 64 3 x 24 = 48 10 

r = 1.4, s = 12 212 = 4,096 3 x 24 = 48 22 

r = 1, s = 18 218 = 262,144 3 x 28 = 768 6,426 

r: the radius of the sampling sphere 

s: the number of sampling voxels 

 

TABLE III.  EXPERIMENTAL RETRIEVAL RESULT SUMMARY 

 3D-LBP LBP-TOP vcLBP 3D-GLCM 

EARLY-ONSET   

AD 61.49% 62.84% 68.78% 65.14% 
FTD 61.50% 59.50% 62.00% 56.75% 

LATE-ONSET   

AD 50.63% 51.56% 55.00% 41.88% 
FTD 68.00% 66.17% 68.67% 63.17% 

 


