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Abstract. The content-based retrieval of diffusion magnetic resonance
(dMR) imaging data would enable a wide range of analyses on large
databases with dMR images.This paper proposes a content-based re-
trieval framework for dMR images to explore the use of Diffusion Tensor
Imaging (DTI) - derived parameters. The propagation graph algorithm
is proposed for the query-centric retrieval of dMR subjects and the fusion
of different features. The proposed framework was evaluated with ADNI
database with 233 baseline dMR images. The preliminary results show
that the proposed retrieval framework is able to retrieve subjects with
similar neurodegenerative patterns.

1 Introduction

Diffusion MR imaging probes the diffusion of water molecules to investigate the
architecture of the brain white matter [1,2]. The introduction of the diffusion
tensor model and the development of tractography techniques have allowed the
reconstruction of the trajectory of major white matter bundles [16].

Content-based retrieval has been applied to many medical imaging modalities
such as CT, MR and PET [14,12,5,9]. The content-based retrieval of the dMR
images [4] would be important for many applications, such as decision support,
training and knowledge discovery. However the retrieval of brain dMR data is
more challenging comparing to the traditional medical imaging modalities. Sim-
ply extracting the mean regional measurements, such as the mean diffusivity
(MD) and the fractional anisotropy (FA), would be insufficient to represent the
information in brain dMR, because the inter-region information should also be
considered. Thus, a method is needed to combine the regional measurements
as well as the brain connectome for brain dMR retrieval. Also, without proper
feature encoding, the tasks related to raw dMR would pose a more intensive
computational bottleneck in image querying than traditional MR due to the
larger quantity of voxels required to index raw dMR images.

To explore the use of the DTI-derived parameters, we propose a content-based
retrieval framework for brain dMR images which combines different DTI-derived



metrics. Elastic Net (EN) [21] is used to filter the extracted features for specific
problem domains in a supervised way. We used the Propagation Graph Fusion
(PGF) [20,13] to construct the affinity graph to index the stored subjects for
query-centric retrieval. The affinity graphs constructed with different features
are fused into a global graph for the multi-view content-based retrieval of dMR.

2 Methods

2.1 Preprocessing and Feature Extraction for Diffusion MR Data

Automatic brain masking is firstly applied to the dMR images. Diffusion tensors
are estimated for each masked dMR brain using the least square approach [11].
The Automated Anatomical Labelling (AAL) atlas is wrapped to the subject to
obtain the predefined brain ROIs [15] by registering the DWT baseline template
to the target baseline volume. The mean regional measurements, including the
number of tracts, the tract lengths, the tracts volume, the fractional anisotropy
(FA) and the apparent diffusion coefficient (ADC), are calculated within each
predefined ROI from the whole brain to represent the regional tracts density and
the average water diffusivity. An example FA index slice is shown in Fig. 1-(a).
Whole-brain neural tractography is performed based on the estimated tensors
using a deterministic algorithm [3]. The reconstructed fibres are filtered by the
grey matter ROIs pair-wisely. The number of reconstructed fibres between each
pair of AAL grey matter ROIs is stored in a symmetric matrix. The hyper-
parameters used in the preprocessing pipeline are consistent across different
subjects. An example of the reconstructed matrix is shown in Fig. 1-(b). For
specific problem domains, such as disease determinant retrieval, Elastic Net is
used to select features supervisely according to the pre-defined diagnostic labels
[21] with only the normal cognitive (NC) and AD patients. It is reasonable to
assume that affected brain ROIs of MCI patients are in a subset of the selected
regions [7].

2.2 Subject-Centered Retrieval

Affinity Matrix Construction Assuming N, types of features have been
extracted from Ny images in the database D and denoting z; an image in the
database and X the feature set, the neighbourhood of z; in the nt" feature space
is formed by itself and its k nearest neighbours, i.e., XZ-(") = xgn), xl(-?), ... ,xE:).
The Jaccard coefficient in Eq.(1) was used to establish the connections between

subjects by measuring the neighbourhoods consistency as follow
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For a query x4, its neighbourhood X4 is constructed with the same proce-
dure to determine its relative position in ID. The first iteration of neighbourhood
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Fig.1. (a) An example FA index slice which represents the mean water diffusivity
within a voxel rendered with 3D Slicer 4.4 [8]; (b) An example of the symmetric brain
inter-region matrix colour map with AAL grey matter (GM) ROIs. Each element in
matrix is the number of tracts filtered by a pair of GM ROIs. The matrix is highly
approximated for single subjects, due to the limitations of the dMR imaging resolution
and the preprocessing pipeline. However the comparison between different subjects
could be informative for the general dMR retrieval tasks.

searching of xz, is performed by propagating the paths from z, to its k near-

est neighbours xt(;f), ... ,1:((17,:). The neighbourhood search is recursively continued

from each reached node in z{”, ..., z{") to their own k nearest neighbours. The
propagation stops until there is no other neighbour to be discovered. The lengths
of the paths between the query and the subject indicate the relevance. The con-

nection weights with regard to a specific query are updated as
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where « is a weight decay parameter to control the damping effect of the walk
and tq(:rgn),m;")) is the number of iterations to reach the link (xE”),xg.")). If a
link is visited multiple times, we select the smallest ¢, for it.

The updated weights are saved in a N4 x Ny sparse affinity matrix, A(7, j) =
w' (gcgn),myl)). The Laplace smoothing is applied to A by adding 1/Ny to each
element to guarantee the non-zero values, because it reduces the coverage of the
discoverable relevant subjects after the fusion of different features. A is then

normalised to be row-stochastic.

Affinity Matrix Fusion For each query with N types of features, IV, affinity
matrices A, ..., AV») can be obtained. The geometric mean is used to fuse
the N, matrices as follow

A*(i, ) = /I A, ) (3)



Fig. 2. A simple illustration of the fusion of each feature graph into a single graph.

An example of the affinity matrix fusion is illustrated in Fig 2. Our method
requires A(™ (i, j) # 0, since otherwise the link (IE"), :L"E")) will be disconnected
regardless of the connections in other types of features. In this way, some po-
tential candidates will be blocked. This problem is solved by Laplace smoothing
during the affinity matrix construction. The weights in A* reflect the overall
white matter affinity to the query. The PageRank algorithm is applied to de-
rive the equilibrium distributions in A* [20] to re-rank the retrieved subjects
according to their probabilities of relevance.

3 Experiments and Results

To evaluate the proposed dMR retrieval framework, 233 subjects with 3D axial
brain dMR images were recruited from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database with ages ranging between 48 and 90 [10]. The sub-
jects were divided into three groups with 61 normal cognitive (NC) subjects,
123 mild cognitive impairment (MCI) subjects and 49 Alzheimer’s Disease (AD)
subjects. For each image, the preprocessing of the dMR images, including ten-
sor estimation, tractography and fibre filtering, were conducted with DSI studio
(http://dsi-studio.labsolver.org) [19,17,18]. Some parameters used for the fibre
tracking are listed in Table 1.

Table 1. The parameters used in DT fibre tracking.

Parameter Value

FA Threshold 0.12
Angular Threshold 60
Step Size 0.68

Seed Number 10000

Leave-one-out was used for evaluating the retrieval results. The tested case
in each trial of leave-one-out was excluded in the feature select with EN. For



each trial in leave-one-out, the Mean Average Precision (MAP) was obtained as

R S pg(k) - rely(K))/T,
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where q is the query index, ) is the total number of queries, k is the rank
in sequence of retrieved subjects, K is the total number of retrieved subjects,
py(k) is the precision at cut-off k, rel, (k) is the relevance score of the k" retrieval
result, and 7} is the number of relevant subjects associated with the query. The
relevance criteria were designed as shown in Table 2.

MAP (4)

Table 2. MAP Relevance Criteria used for retrieval evaluation [6].

Group NC MCI AD
NC 1 025 O
MCI 025 1 0.25
AD 0 025 1

Grid Search was used to obtain the hyper-parameters in the propagation
graph fusion algorithm (the neighbourhood size k and the dampening factor in
PageRank).The single-label and the overall MAP are presented in Table 3. With
the multiple types of features (the regional mean statistics and the fibre tracking-
based features), we compared MAP of the simple feature vector concatenation
(CONCAT) and the proposed propagation graph fusion algorithm (PGF). The
features with/without EN filtering are also compared.

Table 3. The MAP results of the 233 dMR subjects obtained by the feature con-
catenation (CONCAT) and the propagation graph (PGF) algorithm using features
with/without EN filtering (EN+*).

MAP
Fusion Method NC MCI AD Average
CONCAT 34.04 56.39 74.26  54.90
PGF 24.90 52.07 56.51  44.49
EN+CONCAT 39.84 55.66 74.77  56.76
EN+PGF 72.57 52.27 74.54  66.46

The PGF algorithm with features filtered by EN (EN+PGF) performed the
best MAP overall (66.46). The MAP results yielded by EN+PGF on individual
labels were also more evenly distributed than EN4+CONCAT which was chal-
lenging to achieve because of the imbalanced dataset. It was noticeable that
without EN filtering, the PGF algorithm did not outperform the simple con-
catenation (CONCAT). The retrieval of dMR is highly dependent on the quality
of the extracted features, which could be effected by many components along



the preprocessing pipeline, such as imaging, correction, tensor estimation, trac-
tography, template wrapping, etc. Thus the fibre tracking based features were
approximated. The feature selection would filter out the noisy and biased neural
patterns falsely revealed by the dMR features, enabling PGF to construct the lo-
cal neighbourhoods with larger confidence. In Table 3, the feature selection only
used the data with NC and AD labels, since there were big overlaps between
MCI and the other two groups.

4 Conclusion

In this paper we proposed a content-based retrieval framework for brain diffusion
MR imaging data which retrieves subjects from the diffusion MR database re-
garding the affinity in the DTI-derived parameters. Different DTT features were
derived and selected from the dMR data. The propagation graph fusion (PGF)
algorithm was used to fuse the neighbourhoods obtained from different dMR
features. The proposed framework was evaluated with the dMR data recruited
from the ADNI database. We compared different possible settings of this dMR
retrieval framework. The PGF algorithm with features selected by Elastic Net
achieved the best performance according to the MAP of the AD diagnostic la-
bels. This work indicated that DTI-derived parameters can be used to index the
dMR databases for content-based retrieval in order to perform further analysis
in regard to the neural changes.
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