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Abstract

In this paper, we propose a novel method for object
localization, generally applicable to medical images in
which the objects can be distinguished from the background
mainly based on feature differences. We design a new CRF
model with additional contrast and interest-region poten-
tials, which encode the higher-order contextual information
between regions, on the global and structural levels. We
also propose a sparse-coding based classification approach
for the interest-region detection with discriminative dictio-
naries, to serve as a second opinion for more accurate re-
gion labeling. We evaluate our object localization method
on two medical imaging applications: lesion dissimilar-
ity on thoracic PET-CT images, and cell segmentation on
microscopic images. Our evaluations show higher perfor-
mance when comparing to recently reported approaches.

1. Introduction

A wide variety of medical applications comprise ob-
ject localization as an important step for discovering the
anatomical or pathological information from images. We
consider object localization as a generalization of both de-
tection and segmentation, with both automatic identification
of ROI, and a good approximation of the boundary.

We focus on medical imaging problems in which objects
can be localized based on local-level features and feature
differences between the objects and background. For exam-
ple, in positron emission tomography — computed tomogra-
phy (PET-CT) images, abnormalities typically show higher
uptakes than normal tissues. In fluorescence microscopic
images, the cell nuclei normally depict darker colors then
the other cell structures and the background.

Local features are usually not sufficient for a good lo-
calization, because of large inter-subject variations caus-

ing same anatomical structures appearing quite differently
across images. The problem is further complicated due to
low feature differences between different tissue types and
especially for the boundary areas between the objects and
background. In addition, pathologies often lead to larger
imaging variations, and an accurate object localization is
thus more challenging.

For such imaging problems, while lots of work have been
reported [18, 14, 3], they are mostly designed to be do-
main specific; and often rely on sophisticated feature sets,
which can be computational-intensive and difficult to adapt
to other imaging problems. Furthermore, because such fea-
tures are usually designed based on domain knowledge and
empirical studies, their effectiveness may be restricted to
the limited scenarios available in the datasets.

Therefore, we propose an object localization method that
can be generally applicable, requires simpler feature sets,
and addresses low feature differences and large inter-subject
variations. In summary, our main contributions are the fol-
lowing: (i) we enhance the discriminative capability of the
basic conditional random field (CRF) with a contrast poten-
tial and interest-region potential, to encode the global con-
trast information and region-based feature similarities, for
improving the boundary delineations; (ii) a sparse-coding
classification method is proposed for interest-region detec-
tion, with improved discriminative power of the learned dic-
tionaries; (iii) our design is kept general, and local feature
sets are configurable according to the specific application;
and (iv) we evaluate the proposed method with both lesion
dissimilarity on thoracic PET-CT images and cell segmen-
tation on microscopic images.

1.1. Related Work

We focus our review on CRF-based localization methods
in both medical and general imaging domains. As an undi-
rected graphical model, CRF is now one of the most suc-



cessful trends in object class image segmentation [5]. The
basic and most commonly used formulation is to have local
features represented as graph nodes and consistency con-
straints between neighboring regions as edge connections
[13]. However, comparing to the non-graphical discrimina-
tive approach, generally such models add advantages little
more than spatial smoothing of labelings [18].

Higher-level features are often acknowledged as impor-
tant discriminative factors [5, 3]. In particular, relationship
information on a larger scale, such as those across image
slices [7], relating to reference objects [2], or between dis-
tant image regions [6], can be modeled as pairwise con-
nections to encourage labeling consistency or enhance the
discriminative power of local features. Such ideas of con-
necting beyond immediate neighbors are inspiring; how-
ever, choosing the related pairs and describing their inter-
actions are rather application specific. At a more structural
level, object detectors with bounding box outputs have been
incorporated into CRFs as consistency constraints [10, 5].
Although the idea is sound, such methods are normally built
based on well-established object detectors and thus require
only simple interaction modeling; but both assumptions are
not suitable for our problem domain.

2. Object Localization

Given an image I, we first oversegmenting it into a set
of regions {r,}, using quick-shift clustering [17], to incor-
porate superpixel-level information around the pixels. The
objective of object localization is then to derive a binary
mask L = {l,}, with each [, € {0, 1} indicating whether
the region r,, belongs to the object.

2.1. The Proposed CRF Model

We formulate the object localization problem as a binary
labeling task using a new CRF model, with the following
energy function:
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where the set of random variables or nodes of the graph is
denoted by L = {{l,} U {l.} U {l;}}, including the new
auxiliary nodes from the contrast (/.) and interest-region
(l;) potentials. The probability of a certain configuration
is a conditional distribution on the energy function E(L|I),
and the optimal labeling is derived by minimizing the total
energy using the graph cut [9].

Figure 1. The proposed CRF model. (a) The standard CRF con-
struct, with nodes representing the image regions and edges link-
ing the neighboring regions. (b) Introducing two auxiliary nodes
(object and background) for the contrast potential, with edges link-
ing the image regions and the auxiliary nodes (showing only one
set of edges for easier viewing). (c) Based on the detected inter-
est region (purple circle), an auxiliary node for the interest-region
potential is added, with edges linking all image regions in the
interest-region and the added node.

The local potential ¢y, (I,) describes the cost of r, la-
beled as 0 or 1:

or(lp) =1 = P(rp =1|fp) 2

where f, is the local feature vector of r,, and P(.) is the
probability estimate of labeling obtained using a binary sup-
port vector machine (SVM).

The smooth potential g(rp,r,) penalizes the differ-
ences in labeling of the neighboring regions r,, and r, based
on their feature distances with a Potts model:
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where (3 is the normalization factor as the average of all L2
distances between neighboring feature vectors in I. The re-
gions r;, and r, are considered neighbors if they share some
common border in I, and the set of all neighboring pairs is
denoted by Ng.

While the first two potentials follow the standard CRF
constructs (Figure 1a), we describe the contrast and interest-
region potentials (1¢, ¥r, N¢ and Ng) in the following.

Vs (lp, lg) = exp( YLl # 1g) (3)

2.2. Contrast Potential

To improve the labeling accuracy, we want to explore
the contrast information in the image I, with the follow-
ing motivations. Across different images, there are often
large inter-subject variations, causing overlaps between the
feature ranges and hence misclassifications. Nevertheless,
within one image, there is always a certain degree of con-
trast between the objects and background; and the contrast
information helps to discriminate between the two types.

To encode the contrast information, two additional nodes
corresponding to the object and background, namely the
contrast nodes 1° and 1%, are then added to the graph. A



pairwise connection between the image region [, and each
of the two nodes is also established (Figure 1b), and N¢
denotes the set of all such pairwise connections. With such
a construct, we expect to encourage the same labelings be-
tween the image region and contrast nodes if they exhibit
similar features, and also different labelings otherwise.

To do this, we first define the unary potentials of the two
contrast nodes:
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where C'is a large constant, so that large costs are assigned
to l2 # 1 and llc) = 0 and O costs otherwise, to effectively
fix the labelings of the two nodes in the inference results.

We then define the pairwise potentials for the edges
(Ip, 1) with the following. First, based on the labeling
outputs with local features only (Eq. (2)), we obtain
the initial estimation of the objects and background ar-
eas, and two feature vectors f° and f° are then derived
for the estimated objects and background (details of fea-
ture derivation in Sec 4). Next, we compute the contrast
features between 7, and the objects and background as
9p = {fo o/ £, £»/ f2}, and classify the feature g, to two
classes — likely or unlikely to represent the object, denoted
as likely(1) and unlikely(1) — using a binary SVM. Then,
based on the probability estimates -y, of class likely(1), the
pairwise costs are computed as:

0 if 1, = 1, and likely(1)
Yo(lp,19) =< 1—7, ifl, =1, and unlikely(1)
vy ifly =0
(5)
0 if 1, = 0, and unlikely(1)
Ve(lp, 1) =3 v, if I, = 0, and likely(1)
1—n, ifl,=1
(0)

Note that because of the likely and unlikely terms, the
above pairwise potentials no longer follow the Potts model,
and penalize labeling consistency if the features of the im-
age regions and the contrast nodes are actually dissimilar.
The total energy of the contrast potential can however, be
rewritten in the following format, to keep it submodular (bi-
nary and with pairwise term encouraging consistency) for
efficient graph-cut energy minimization:
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where o, = 7y, if I, = 0, and o, = 1 — ~y,, otherwise.
2.3. Interest Region Potential

Although the contrast nodes represent the object and
background regions of an image I on a global scale, the

structural information between image regions are not ex-
plored. An obviously important structural information is
that, regions that are likely parts of the same anatomical or
pathological structure should take the same labelings.

In our formulation, the hypothesis is that, if we can de-
tect a set of structures, i.e. interest regions R;, the com-
prising regions 7, € IZ; should preferably be assigned to
the same category, but also depending on their individual
suitability of such an labeling. The advantage of such an
approach is that, we can employ a totally different method
to detect the interest regions (e.g. non-CRF and different
features), so the generated regions can serve as a second
opinion to refine the object localization.

Assume a set of interest regions R; are detected from an
image [ (details in Sec 3), and each interest region is char-
acterized by its feature f;, most probable label I € {0,1}
and a set of image regions r, covered. Note that r, might
partially overlap with R; especially around the boundary ar-
eas of It;, and hence not all r, covered by I; should have
the same label as [7. To determine the the probability of
I, =17, we first compute the following feature vector:

UP:{Q(TP’Ri)/Tva fp_fi Hafzfp/fz} (8)

which represents the degrees of area overlap and feature
homogeneity between 7, and R;, with f;_, denoting the
feature of I?; excluding r,. Then a binary SVM is trained
to classify v, into same or dif f categories, indicating if
l, = I7 or otherwise, and the probability estimate of [, = [
is denoted by 0, ;.

Next, to integrate the interest-region detection hypothe-
sis into the CRF formulation, for each R; detected, a node
l; is added to the graph, with the unary potential ¢ (l;) de-
fined similarly to Eq. (4). An edge is then connected be-
tween each pair of (I, ;) for all v, € R; (Figure 1c) with
Np denoting all such edges for image I, and we define the
pairwise potential as:

Vr(lp, i) = 0p:1(1, # 1) ©)

Since r, € R; is quite likely to exhibit the same labeling
as R;, we choose to use the Potts model to encourage such
consistency. The cost of different labelings is directly re-
lated to the probability of [, = [, and hence we use 6, ; as
the pairwise cost. If r, is less likely to be labeled as [, the
use of 0, ; is also able to lessen the consistency constraint.
With the above definitions, the total energy term of the
interest-region potential is thus rewritten as the following:

ST wrlp ) =D o)+ > 0,01, £ L)
(pi)ENR i (pi)ENR
(10)

2.4. Graph Inference

All energy terms are given equal weights (based on our
empirical evaluation), and piecewise learnings of the prob-



ability estimates used in the local, contrast and interest-
region potentials are conducted first. The binary inference
problem L* = argmin F(L|I) is then solved efficiently
using the graph cut.

3. Detection for Interest Region Potential

Due to our motivation of detecting the interest regions
in a totally different way from the graph-based approach to
support the interest-region potential (Sec 2.3), we choose
to design a sparse-coding based classification method for
interest-region detection. Besides its popularity and widely
demonstrated effectiveness [12], we believe sparse coding
can be particularly suitable for our problem because of the
large variations in the dataset.

3.1. Sparse Coding for Classification

Let Y be a set of n-dimensional data samples Y = {y; :
j=1.,J}and Y € R™. A representative dictio-
nary for Y with K atoms is denoted as D = {dj : k =
1,.,K} € R™ ¥ Each y; can then be represented as
a linear combination of a few (i.e. < T') atoms in D with
minimum reconstruction error, and the corresponding co-
efficient vector x; is the sparse code. Denoting the set of
sparse codes of the data samples Y as X = {z; : j =
1,..,J} € RE>J both the dictionary D and sparse coding
X can be learned with K-SVD [1] by solving the following
problem:

(D, X) = argmin ||[Y —DX|35 s.tVj,||lzjllo <T (11)
D, X

where |Y — DX ||3 represents the reconstruction error.

Once the dictionary D is learned, a given data sample y
can then be represented as a sparse code x by solving the
following using the OMP algorithm [16]:

r=argmin ||y — Dz|3 st |zlo<T  (12)

A classifier (e.g. SVM) can then be trained based on a set of
such sparse codes, so that  and hence y can be classified.
In our context, an image [ is divided into grid-based
patches, and each image patch is represented by its feature
descriptor y. The dictionary D is generated with a training
set Y, and each image patch is then classified as interest
region or otherwise (h € {1,0}) based on its sparse code .

3.2. Discriminative Sparse Learning

A shortcoming with the previously described approach
is the separation between the dictionary learning and the
classifier training. There is no guarantee that the learned
dictionary will produce discriminative sparse codes for the
classification. Several approaches have thus been proposed

to integrate the two steps of learnings as [8]:
(D, X, W) = argmin [[Y' — DX|3 + [W]*+
D,X,W

N L{hy, fap, W)} st Vi aglle < T (13)
J

where £(.) is the loss function, and the learned weights W
for the classifier hypothesis f(.) is used to produce the clas-
sification result with [ = Wx.

However, it can be seen from the Eq. (13) that although
part of the objective is to minimize the difference between
the predicted hypothesis f(.) and the ground truth h;, the
final result is still largely affected by the reconstruction
term, which may then reduce the discriminative power of
W. Furthermore, the loss function normally resembles a
regression goal, and hence limiting the classification per-
formance. Therefore, we suggest that while such an inte-
grated approach has the advantage of generating a more dis-
criminative dictionary D, the weights W produced are not
discriminative enough for a direct classification, and hence
should not totally replace the separate classifier training.

We propose a different method as follows. First, for the
data samples Y € R"*/, we create a corresponding label-
ing vector H = {h;} € {—1,1}**/, with 1 for interest
region. Based on linear-kernel SVM, the optimization ob-
jective of the weight vector w € RV ¥ is:

argmin

1 2
gmin ol +03
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Combining Eq. (11) and (14), we get:

(D, X,w,b) = argmin ||Y — DX||2 + 1||wH2 + CZ@-
D, X,w,b 2 r
st Vi, [[zjllo < T, hy(wsa; +b) 21 -§5, & >0

5)
which follows the general form as Eq. (13). To simplify
the complexities caused by the inequality constraints on &;
and the signed h;, we relax the formulation based on least
squares SVM (LS-SVM) [15] as:

(D, X, w) = argmin [[Y — DX||3 + [[w|* + ) _ &
D, X w -

J

(16)
in which the constants are omitted for clarity. By combining
w and b, and substituting £;, the problem is then equivalent
to the following:

(D', X', w') = argmin Y — D'X"||3 + [[w'[|*+
D’ X' w'

IH —w'X'l5 stV ||2jllo < T

A7)



where w' = [w,b] € R+ and X' ¢ REFDX ap
pended an addition dimension with constant value 1 to ab-
sorb b, and D’ € R™ (E+1) \with an additional atom to be
dimensionally compatible with X'.

To solve Eq. (17), an alternative approach is used:

Step 1. The objective is to find D’ and X', with con-
straints specified by H for a more discriminative dictionary.
The function is rewritten as the following:

(D', X" w'y = argmin |Y — D'X'||3+ ||H —w'X'||3

! ’ ’
D’ X" w

~1( 5 )- (2 ) xe

st Vi, |lzfllo T

(18)
which resembles the standard K-SVD formulation. How-
ever, since the (K + 1)th dimension of X’ should be 1, we
modify the K-SVD algorithm by enforcing such fixed val-
ues during the alternating sparse coding steps for dictionary
learning. Note that H is rescaled to the same range as Y,
and the ||w’||* term in Eq. (17) is no longer necessary be-
cause of the column-wise normalization in K-SVD.

Step 2. The computed D’ and X’ are input to Eq. (14)
to derive w’ using SVM. Although the direct solution is to
use LS-SVM as in Eq. (17), we opt for the standard SVM
to encourage larger positive or negative predications.

Step 3. D', and w' are then used to initialize Eq. (18) for
another round of K-SVD optimization.

Several iterations of the above steps are executed to de-
rive the final sets of D’, X’ and w’. To detect the interest re-
gions, the feature vector y of an image patch is transformed
to a sparse code x as a linear combination of D’, which is
then classified using SVM based on the final w'.

4. Implementation Details

To evaluate the proposed object localization method, we
apply it to two medical image analysis tasks, and we de-
scribe the application specific details in this section.

4.1. Lesion Dissimilarity

Measuring lesion similarity is important in many medi-
cal applications, such as content-based image retrieval for
diagnosis referencing. In the case of lesions visible on
thoracic PET-CT images, their size and spatial extents are
critical for lung cancer staging, which are hence the main
criteria for dissimilarity measure. In our approach, first,
lesions (i.e. lung tumors and abnormal lymph nodes) are
localized in each image slice with the proposed method.
Second, their textural (Gabor filters) and spatial features
(circular-histogram) are extracted in 3D. Lastly, a weighted
histogram-intersection is used to compute the distance, with
the feature weights learned using the triplet method [4].

For the first lesion localization step, the average CT and
PET intensities are used as the local features of an image
region 7. An initial SVM classification is first performed
to categorize the image regions into normal lung field (LF),
mediastinum (MS) and lesion areas (LA). The identified LF
is accurate enough due to its distinct features, but not the
other two groups, especially the MS regions could contain
lower-intensity lesions and the boundary areas of lesions.
The CRF formulation is thus used to relabel the (MS+LA)
regions to lesion and mediastinum. The object feature f? is
computed as the average intensities of LA regions, and the
background feature ff from the largest connected compo-
nent of the MS regions that approximates the mediastinum.
For the interest-region detection, the image slices are di-
vided into 4 x 4 patches, and the mean, standard devia-
tion, minimum and maximum intensities computed from
both CT and PET are used as the patch feature descriptor
y, which are then trained for sparse coding and classifica-
tion of interest regions (i.e. lesions).

4.2. Cell Segmentation

Cell nucleus segmentation is one of the most impor-
tant tasks in analyzing and quantifying fluorescence micro-
scopic images. In our approach, the cell nucleus is local-
ized using the proposed method; and since the localization
results also tend to delineate the nucleus boundaries closely,
such an approach can be directly used for segmentation.

A 10-dimensional feature vector is used to describe the
image region r,: average RGB/LUV/RGB after Gabor fil-
tering, and average grayscale intensity. An initial SVM
classification is performed to categorize the image regions
into nucleus (NL), cytoplasm (CP) and background (BG),
to filter BG from further processing. The intensity values
of the NL and CP regions are quite similar and often vary
largely between different images, hence causing mislabel-
ings in the initial classification. The CRF formulation is
then used to relabel the NL and CP regions. The object
features f and fi.’ are computed as the average intensities
of the NL and CP regions, respectively. For the interest-
region detection, the images are divided into 8 x 8 patches,
and each patch is described by its mean, standard devia-
tion, minimum and maximum values in RGB and grayscale
spaces as y for sparse coding. And interest regions repre-
senting both NL and CP are detected, to have a good sepa-
ration between the two types for an accurate segmentation.

5. Experimental Results

5.1. Results on Lesion Dissimilarity

The datasets comprise of 40 thoracic PET-CT 3D image
sets from non-small cell lung cancer studies. Each image
set has on average 25 transaxial PET-CT slice pairs. A to-
tal of 64 lesions including lung tumors and abnormal lymph



Figure 2. Two example localization outputs. (a) Transaxial CT
image slices (showing the thorax after preprocessing). (b) Co-
registered PET image slices. (c) The labeling outputs using stan-
dard CREF, with dark gray for lung field, light gray for mediastinum
and white for lesion. (d) Our localization outputs with the two ad-
ditional potentials, with lesions highlighted in orange.

Table 1. The localization performances comparing our proposed
method with standard CRF.

| Recall (%) | Precision (%) | F-score (%)
Ours 97.0 95.4 96.2
CRF 76.6 94.2 84.5

nodes are annotated, and the similarity/dissimilarity rela-
tionships between each pair of 3D image sets are marked as
the ground truth. An automatic preprocessing is performed
on each image slice to remove the soft tissues outside of
the lung field and mediastinum using thresholding and con-
nected component analysis. Three image sets showing typ-
ical thoracic characteristics are selected for training, and
testing is performed on all image sets.

Figure 2 shows examples of the lesion localization. The
first example illustrates the benefits of the contrast poten-
tial, in which the lesion is initially not detected with stan-
dard CREF, due to the relatively low PET intensities. The
interest-region potential is particularly useful in refining the
lesion boundaries, which tend to be underestimated with the
standard CREF, as shown in the second example.

It is observed that, the standard CRF tends to produce
a large number of either totally undetected or underesti-
mated lesions; and our proposed method is able to en-
hance the localization performance. Based on the measured
3D object-level true positives (TP), i.e. accurately localized
with >50% lesion volume, false positives (FP) and false
negatives (FN), we summarize the localization recall, preci-
sion and F-score in Table 1. Our proposed method demon-
strates much higher recall and F-score comparing to the
standard CRF approach.

The localized lesions are then used to retrieval images
with similar lesions. The retrieval tests are performed by
using each 3D image set as a query image, and the remain-
ing 39 images are ranked accordingly. If an image set con-
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Figure 3. The retrieval precision and recall.

tains multiple lesions, the most prominent lesion (normally
primary lung tumor) is used as the representing feature.
We compare the retrieval performance with three other ap-
proaches: (i) the state-of-the-art labeling-based method [14]
for thoracic PET-CT image retrieval; (ii) a bag-of-words
representation using spatial pyramid matching (SPM), with
local intensity features extracted from grid-based image
patches; and (iii) a bag-of-words representation using the
SIFT descriptor. All methods are trained in the same way
to have optimal feature weights for the dissimilarity com-
putation. As shown in Figure 3, our proposed method ex-
hibits the highest retrieval precisions for all recall levels.
The SPM approach also demonstrates good performance,
suggesting the advantage of integrating spatial information
into the image descriptor.

5.2. Results on Cell Segmentation

The serous database [ | 1] is used to evaluate the cell seg-
mentation. The database contains 10 microscopic images
from serous cytology, each of 512 x 512 pixels. A total of
254 cell nuclei are present in the images, with ground truth
of cell nuclei segmentation provided. The images show iso-
lated or touching cells as well as clustered or overlapping
cells, and the color of the nuclei can range from very dark
to very pale blue. Same as [3], half of the images are used
for training and the others for testing.

To evaluate the segmentation performance, we compute
the PASCAL VOC criteria of pixel- and object-level accura-
cies, both as TP/(TP+FN+FP). We also compare our results
with three approaches: (i) L+S, the standard CRF with local
and smooth potentials; (ii) L+S+C, with additional contrast
potential; (iii) L+S+R, with additional interest-region po-
tential; and (iv) the state-of-the-art discriminative labeling
method [3] reported for the same database.

As listed in Table 2, our method achieves the highest
pixel- and object-level accuracies. The improvements of
having the contrast and potential terms are evident. The
method [3] produces the second highest pixel-level accu-
racy, by classifying superpixel-based appearance, shape and
context features. The performance difference between L+S
and [3] suggests that if we incorporate the feature set of



Table 2. The segmentation results comparing various methods.

[ Ours| L+S [ L+S+C [ L+S+R | [3]

Pixel Acc (%) || 85.6 | 82.0 | 83.1 84.6 85.1

Obj Acc (%) || 89.3 | 84.5 | 86.2 88.7 84.0

(b) (©

Figure 4. Two example segmentation results. (a) Cropped micro-
scopic images, with orange circles delineating the segmentation
ground truth. (b) The segmentation results with L+S. (c) The seg-
mentation results of our proposed method.

[3], the segmentation accuracies would be further improved.
However, we use only simple intensity features here to
mainly demonstrate our object localization idea.

We also test replacing the interest-region detection with
standard sparse-coding classification, to evaluate the useful-
ness of introducing the discriminative dictionary learning
enhancement. It is found that our proposed method exhibits
on average 1.1% improvement for both pixel- and object-
level measurements with the new approach.

The first example shown in Figure 4 indicates that our
method is quite effective in removing the cytoplasm areas
that connect the cell nuclei. As shown in the second exam-
ple, lighter intensities of the cell nuclei cause many false
negatives with the standard CRF approach; and our result
shows more accurate delineations of the actual contours.

6. Conclusion

In this paper, we present a new method for object lo-
calization in medical images. A new CRF model with
additional contrast and interest-region potentials are de-
signed for effective object localization, addressing large
inter-subject variations and low feature differences between
the objects and background. A new sparse-coding classifi-
cation approach is also designed for the interest-region de-
tection, with enhanced discriminative power of the learned
dictionaries. We evaluate the proposed method on lesion
dissimilarity on thoracic PET-CT images, and cell segmen-
tation on microscopic images, and our method shows higher

performance compared to the state-of-the-art techniques.
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