
March 23, 2013 15:59 World Scientific Review Volume - 9.75in x 6.5in paper

Chapter 5

Feature-Centric Lesion Detection and Retrieval in

Thoracic Images

Yang Song1, Weidong Cai1, Stefan Eberl2, Michael J Fulham2,3,

and David Dagan Feng1

1Biomedical and Multimedia Information Technology (BMIT) Research Group,
School of Information Technologies, University of Sydney, Australia

2Department of PET and Nuclear Medicine, Royal Prince Alfred Hospital,
Sydney, Australia

3Sydney Medical School, University of Sydney, Australia

yson1723@uni.sydney.edu.au

Advances in medical digital imaging have greatly benefited patient care.
Computer-aided diagnosis is increasingly being used to facilitate semi- or fully-
automatic medical image analysis and image retrieval. While different tasks in-
volve different methodologies in this domain, these tasks normally require image
feature extraction as an essential component in the algorithmic framework. In
this Chapter, we focus on image feature modeling in lesion detection and image
retrieval for thoracic images. For both tasks, we first review the state-of-the-art
and then present some of our own work in more detail.

1. Lesion Detection

Lung cancer is the most common cause of cancer-related death. Non-small cell

lung cancer (NSCLC) is the most prevalent type of lung cancer, and it accounts for

about 80% of all cases.1 Staging, which assesses the degree of spread of the cancer

from its original source, is critical in determining prognosis and choosing the most

appropriate treatment. In the ‘tumor, node, metastasis’ (TNM) staging system, the

size and spatial extent of the primary lung tumor and the degree of involvement of

regional lymph nodes are critical factors.

Positron emission tomography – computed tomography (PET-CT) with 18F-

fluoro-deoxy-glucose (FDG) tracer is now accepted as the best imaging technique

for non-invasive staging of NSCLC.2 In PET-CT, the CT scan provides anatomical

information; it has relatively low soft tissue contrast which causes difficulties in sep-

arating lesions from the surrounding tissues. On the other hand, the PET scan has

high contrast and reveals increased metabolism in structures with rapidly growing

cancer cells, but the localization of these foci of increase metabolism is limited by

the low spatial resolution in PET. The integrated PET and CT scan thus provides

1
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complementary functional and anatomical information. In current routine clinical

workflow, the detection of abnormalities is performed manually. There may be many

such abnormalities in a patient with NSCLC. To assist this time-consuming process

and potentially provide a second opinion to the reading physicians, an automated

system that can provide fast and robust lesion detection is desirable.

The objective is thus to design a fully automated methodology to detect pri-

mary lung tumors and disease in regional lymph nodes from PET-CT images of

the thorax. Examples of lesion detection are shown in Fig. 1. There are two main

challenges. First, tumor metabolism detected in PET relates to uptake of the tracer

FDG; this uptake can be expressed semi-quantitatively as the standard uptake value

(or SUV). The SUV normally exhibits high intra- and inter-patient variances, and

can highlight non-pathological areas (e.g. in myocardium). Second, separation of

the primary lung tumors from abnormal lymph nodes can be difficult, especially

in complex cases where tumors invade the mediastinum or lymph nodes in the

pulmonary hilar regions. In this section, we review the state-of-the-art in lesion

detection, and describe our approaches3–5 to tackle this problem.

Fig. 1. Examples of primary lung tumors and involved lymph nodes.4 Each row shows one

example, using a transaxial slice view for easier visualization. The left column shows the CT
slices, the middle column the PET slices, and the right column shows the lung tumors (red) and
involved lymph nodes (orange).

1.1. Review of State-of-the-art

Currently there are no published data on the simultaneous detection of lung tu-

mors and disease in regional lymph nodes, apart from our own studies. Existing

work is mainly on lung tumor detection, without considering the involvement of

lymph nodes. By first segmenting the lung fields, a threshold and fuzzy-logic based

approach is then used to detect the lung tumors,6 but the detection performance

is quite sensitive to the delineation accuracy of the lung fields. Another approach

attempts to handle tumors lying close to the edge of lung fields by incorporating the

location, intensity, and shape information,7 but the method could potentially result

in a large number of false positives with the predefined SUV thresholds. False pos-

itives are usually detected in the mediastinum with elevated SUV. To reduce such
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false positives, learning-based techniques with tumor-specific features have been

proposed,8,9 but the methods are based on empirical studies of SUV distributions

and tumor sizes, and do not seem to consider abnormal lymph nodes in the thorax.

Another category of lesion detection is to detect all instances from PET im-

ages, regardless of their types. Such approaches include a texture-based classifi-

cation method,10 and a water-shed based algorithm integrated with morphological

measures.11 A common drawback with these techniques is that they operate on

user-selected volume-of-interest (VOI) or potential lesions. Fully automated lesion

detection has also been studied,12 and we have previously reported several meth-

ods13–15 based on subject-level contrast features. However, differentiation of lung

tumors from abnormal lymph nodes is not investigated in these studies.

1.2. Region-based Feature Classification

In our work, we first proposed a region-based feature classification method3 to detect

the primary lung tumors and the abnormal lymph nodes, in a three-step approach.

1.2.1. Region Type Identification

A modified fuzzy c-means (FCM) approach is first used to cluster each PET-CT

slice into regions of various sizes and shapes.16 Based on anisotropic diffusion

filtering (ADF),17 Gabor and shape features, each region is then represented by a 12-

dimensional feature vector F : mean and variance of ADF/Gabor filtered CT values;

mean and variance of ADF/Gabor filtered PET SUVs; the size; the eccentricity;

and the centroid x and y coordinates.

Next, the regions are classified into 5 types: lung field, mediastinum, involved

regional lymph node (N), tumor in the lung, and border area surrounding the tumor.

The last two represent the T type. The classification is based on feature F with a

multi-class linear-kernel support vector machine (SVM).18 The feature weights for

each region type are also derived from the support vectors, resulting in a 5 × 12

matrix of feature weights w.

1.2.2. Region Type Refinement

The region types identified are often misclassified, particularly in terms of correct T

and N classifications. Since both could be characterized by high CT values and high

SUVs, the feature vector F is not sufficient to differentiate the two types. A major

difference between T and N, however, could be modeled by the spatial relationships

between regions. For example, T is within lung fields while N is in the mediastinum

or the hilar nodal area.

We thus refine the region classifications based on spatial information. The region

delineation step normally formulates several near-concentric regions at the T/N

area, and several large regions corresponding to the lung fields and mediastinum

surrounding the T/N area. Therefore, for each region, Ri, initially classified as T or
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N, its spatial information could be defined by the regions inside and outside of Ri:

〈Rj , Rk〉. A 36-dimensional feature vector FS is hence computed by concatenating

the feature vectors of Ri, Rj and Rk.

A second multi-class SVM is then trained to classify the regions based on the fea-

ture vector. The final region type is determined by combining the margins computed

from both multi-class SVMs. The output with the maximum combined margin is

chosen as the region type.

1.2.3. 3D Object Localization

Given the T or N regions identified from each PET-CT slice pair, we then attempt

to localize the 3D T or N objects within a case. Because not all T or N areas are

correctly identified from the slices due to errors from the classification and the region

delineation step, we design a voting-based method for the localization. Specifically,

two scores STI and SNI are assigned to each slice I in a case:

S
T/N
I = exp [−min(d(I, J), d(I,K))] (1)

J and K are the slices spatially nearest to I (above and below) with detected

T/N regions; and d is the normalized weighted (w) Euclidean distance between the

feature vectors of the T/N regions. For each case, the mean score value and median

locations of the T/N regions are computed from its set of images. T/N regions with

scores higher than the mean score value are marked as valid locations.

1.3. Multi-stage Discriminative Model

A drawback of the region-based classification method3 is that it requires a separate

class of tumor border, to work around the issue that the surrounding areas of tumors

in the lung are often misclassified as mediastinum. Such a tumor-border class

complicates the training process, which is unnatural for a clinical workflow. Our

later work19 avoids this issue as we use a multi-level discriminative model and more

comprehensive spatial features. However, this method requires the surrounding

regions of tumors and abnormal lymph nodes to be accurately classified, involving

a heuristic-based grouping operation to separate the surrounding regions from the

mediastinum. In addition, the regions belonging to a tumor or an abnormal lymph

node are classified individually, which could result in inconsistent labeling within a

3D volume. Therefore, we then proposed a multi-stage discriminative model,4 as

detailed in the following.

1.3.1. Abnormality Detection

In the first stage, after preprocessing for background removal,20 each transaxial

PET-CT slice of a 3D image set is clustered into regions using quick-shift cluster-

ing.21 Represent each 3D image set by Nr regions from all slices V = {ri : i =
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1, ..., Nr}. Each region ri is then classified into lung fields (L), mediastinum (M) or

abnormality (ROI) categories based on low-level and high-level features.

Two types of low level features are computed: intensity and neighborhood. To

describe the intensity features, a two-dimensional intensity vector is computed: (i)

average CT density and (ii) average normalized SUV of ri. While the average CT

density is based on the raw values, for PET, we perform an extra SUV normalization

‖ui‖ with a sigmoid function:

‖ui‖ =
C1

1 + exp(−(ui − θV )/θV )
(2)

where ui is the average SUV of ri, θV is the adaptive reference value computed for

each 3D image set V in a similar approach to our previous work,13 and C1 is a scaling

constant controlling the range of the normalized SUV. The normalization is to

rescale the SUVs across patients within a similar range, and in the process, boost the

separations between the ROIs and the mediastinum. To describe the neighborhood

features, the average CT density and normalized SUV of the neighboring area of

region ri in the adjacent slices (one above and one below) are also computed, to

incorporate 3D information.

In some cases, the SUVs of ROIs and the mediastinum are relatively close, and

some false positive ROIs could be detected in the mediastinum with the low-level

features. We thus exploit the high-level features, by computing the contrast between

the detected ROIs and the lung fields and mediastinum. To do this, we first classify

the regions into lung fields, mediastinum and ROI – {RL, RM , RO}, based on the

low-level features. Let uL, uM and uO be the average normalized SUVs of RL, RM
and RO, a four-dimensional high-level feature is then computed for each ROI region

ri: {ur/uL, ur/uM , ur/uO, ur}, where ur is the average normalized SUV of ri.

Any misclassification at this stage would be propagated to later stages. Thus

we use soft labeling to create a vector of probabilities, rather than labeling every

region with a single category (L, M or ROI), to reduce the impact of possible

misclassifications. The soft labeling vector, denoted as pi = {pLi , pMi , pOi } for region

ri, is obtained by combining the probability estimates of the SVM classification

based on both low- and high-level features.

1.3.2. Tumor and Lymph Node Differentiation

In the second stage, the detected abnormalities are differentiated as tumors or

abnormal lymph nodes, as illustrated in Fig. 2. A conditional random field (CRF)22

model integrated with SVM and a comprehensive set of features are designed to

achieve an accurate discrimination between the two types of abnormalities (SVM),

and minimize any misclassification by exploiting 3D correlations (CRF). The use of

CRF allows us to incorporate the structural information in addition to the region-

based features, so that a 3D ROI volume could be classified collectively.

Based on the outputs of the first stage, the abnormalities detected from a 3D
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Fig. 2. Illustration of tumor and lymph node differentiation.4 (a) A transaxial PET-CT slice.

(b) The abnormality detection output with two ROIs detected. (c) Region-level labeling with the
unary term based on spatial and contextual features, showing the two ROIs labeled as T (gray)

and N (white). (d) Volume-level labeling with the pairwise term based on 3D spatial features.

image set V are represented as NO regions {ri : i = 1, ..., NO}. Rather than

individual regions created at the clustering step, ri here represents a large ROI

region created by merging regions that are labeled as ROI and spatially connected

in the same slice. A set of 3D connected {ri} (i.e. across slices) then form a 3D ROI

volume, and V could contain multiple ROI volumes, e.g. a primary lung tumor and

several abnormal lymph nodes.

The objective is then to assign each ri a binary label ai ∈ {T,N}; and the

probability of a labeling set A = {ai : i = 1, ..., NO} is modeled as a conditional

distribution in the CRF framework:

P (A|V ) = Z−1 exp(−E(A|V )) (3)

where Z is the partition function. We define the energy E(A|V ) as a linear combi-

nation of a set of unary features Fk(ai, V ) and a pairwise feature G(ai, ai′ , V ):

E(A|V ) =
∑
i

∑
k

λkFk(ai, V ) +
∑
i,i′

µG(ai, ai′ , V ) (4)

where λk is the weight of the kth feature, i and i′ index the 3D connected regions (in

different slices), and µ is the weight of the pairwise feature. The unary features are

computed for each ri and are the most decisive factor for labeling ai ∈ {T,N}, while

the pairwise features are to exploit the 3D structural information for a consistent

labeling throughout an ROI volume.

The idea is then to search for a labeling combination for V , so that the total

energy cost is minimum, leading to a labeling set that would be optimized for the

whole 3D volume. Graph cut23 is used to derive the most probable labeling A∗ that

minimizes the energy function: A∗ = argminA E(A|V ).

Unary Term:

The unary term
∑
k λkFk(ai, V ) (denoted as ψ(ai)) indicates the labeling pref-

erence of individual region ri. Specifically, given label ai for region ri, a higher

ψ(ai) means a higher cost (i.e. lower probability) of ri belonging to ai. The unary
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term could thus be considered as a binary classifier for ri. We design a highly dis-

criminative feature set describing the spatial and contextual features, and derive

the unary cost ψ(ai) from the classifier output (SVM).

The main distinctive feature between T and N is the location information. In

particular, it is generally true that T is in the lung fields while N is in hilar region

or in mediastinum. However, quite often T might invade into the mediastinum and

appear to be outside of the lung fields. For T that is near to the mediastinum,

mislabeling of its surrounding areas would cause T to appear outside of the lung

fields. In addition, N could be adjacent to the lung fields, appearing similar to T.

Based on these considerations, we design three types of features to extract from

each region ri that is detected as ROI: (i) Quad-radial global histogram: four radial

lines are drawn at ±45◦ and ±135◦, from the geometric center of ri, and a 12-

dimensional histogram Hg is then created to compute the distribution of L, M

and ROI in the four radials. (ii) Surrounding contour histogram: a closed contour

is drawn outside of ri, with a displacement of d from the boundary of ri, and a

three-dimensional histogram Hs is then created to count the percentages of L, M

and ROI in the surrounding contour. (iii) Pleural distances: a four-dimensional

vector D containing the distances between ri and the lateral, medial, anterior, and

posterior sides of the nearest lung field are computed.

To compute the unary cost, a binary SVM is used to classify ri to T or N

categories based on its feature vector {Hg, Hs, D}, with a probability estimate pai
for each category. The unary cost is then computed as ψ(ai) = 1− pai , to produce

two cost values for each ri. Furthermore, we observe that the regions nearer to the

boundary of the ROI volume are more prone to mislabeling. Therefore, the unary

cost is refined with a Gaussian weight ωi based on the distance between ri and the

volume center:

ψ(ai) = ωi(1− pai); ωi = exp(− (zi−zc)2
2σ2 ) (5)

where zi and zc are the z coordinates of ri and the center of the volume, and σ is

calculated as 1/2 of the size of the volume.

Pairwise Term:

The pairwise term µG(ai, ai′ , V ) (denoted as φ(ai, ai′)) is useful in promoting

spatial consistency between spatially connected regions ri and ri′ . Specifically, a

cost is assigned as φ(ai, ai′) if ri and ri′ are labeled differently. The regions ri and

ri′ are considered spatially connected if they are part of the same 3D ROI volume.

The pairwise term thus explores the inter-slice and volume-level information for

refined labeling.

We define the pairwise cost as:

φ(ai, ai′) = δ(ai − ai′) · x′; x′ = 1
1+exp(−C(x−0.5)) (6)

where δ(ai − ai′) is 0 or 1 indicating the same or different labelings of ri and

ri′ , and x′ is the cost value, which is a sigmoid normalization of the actual cost:
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x = α(ri, ri′) · β(ri, ri′).

The factor α(ri, ri′) measures the spatial distances between the two regions.

The value of α(ri, ri′) is in [0, 1] range, and is larger if the distance between ri and

ri′ is smaller. Such a computation is similar to the usual CRF formulation, but is

based on the spatial distances, rather than intensity differences; and the pairwise

cost is computed between all pairs of regions of a 3D ROI volume, rather than only

for those neighboring regions. The factor β(ri, ri′) is computed as the degree of

overlap in the xy plane between the two regions in different slices. This factor is

introduced because in some cases, adjacent T and N volumes could actually form

into one 3D volume. With the α(ri, ri′) factor alone, the regions in T and N would

be all correlated, and the lowest energy solution would tend to produce a single

label for the joint volume.

1.3.3. Tumor Region Refinement

In the third stage, we identify high uptake in the myocardium as a false positive

tumor volume and update its labeling to M. This is based on the usual assumption

that images showing a high SUV in the myocardium should be considered normal,

and a tumor detected in such an area should be ignored.12

Given a detected tumor volume Tq, if it is at the left half of the thorax, a

CRF model is employed to classify Tq to either M or T category, depending on the

likelihood of Tq representing a high-uptake in the myocardium or a lung tumor.

Defining Tq as a series of regions {ri : i = 1, ..., NO}, with each ri representing a

set of connected T regions in a slice, the CRF model is designed based on the same

construct as in the second stage, but with a different set of features for the unary

term: (i) Pleural Distances: the signed distances between ri and the four sides of

the left lung field is computed. (ii) Shape of Lung Field: a HOG descriptor24 is

used to describe the shape of the left lung field that ri is adjacent to. A binary

SVM is then used to classify ri to either M or T, and the unary cost is computed

from the probability estimates of the classifier.

1.3.4. Experimental Results

The dataset used in this study comprised image scans from 85 patients diagnosed

with NSCLC, acquired using a Siemens TrueV 64 PET-CT scanner at the Royal

Prince Alfred Hospital, Sydney. A total of 93 lung tumors and 65 abnormal lymph

nodes were annotated. During the preprocessing, the PET images were linearly

interpolated to the same voxel size as the CT images, and FDG uptake normalized

into SUV based on the injected dose and patient’s weight.

We compared our results to the previous method,19 which was the only work

that addressed the detection of tumor and involved lymph nodes. Since the original

work19 was evaluated on a different dataset, we repeated the test on the current

dataset. As shown in Table 1, our method exhibited clear improvements, which were
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Table 1. Performance comparison with other methods. * indicates rerun
results on current dataset. R means recall and P means precision.

Method Test size # T # N T-R T-P N-R N-P

Proposed method 85 cases 93 65 97.9 88.4 86.2 88.9

Song et.al.19 50 cases 53 36 84.4 83.8 77.8 76.9
Song et.al.19* 85 cases 93 65 89.3 79.1 72.3 82.5

mainly attributed to three factors: (i) fewer abnormal lymph nodes mislabeled as

tumors, especially for those nodes lying close to the lung fields, with the spatial and

contextual features (unary term); (ii) fewer tumors mislabeled as abnormal lymph

nodes, especially those previously caused by inconsistent labeling of regions in one

tumor volume, with the spatially-smoothed 3D volume labeling (pairwise term);

and (iii) fewer high-uptake areas in the myocardium mislabeled as abnormalities.

1.4. Data Adaptive Structure Estimation

While the multi-stage discriminative model is fairly effective for lesion detection, it

relies mainly on complicated and domain-specific feature design. These features are

designed based on domain knowledge and empirical studies, and so their effective-

ness may be restricted to the limited scenarios available in the datasets, and might

be difficult to generalize to a larger variation of cases.

Therefore, we proposed a different approach to the detection problem – after

detecting all abnormalities, if we can identify the actual lung fields (tumors in-

clusive), then we can differentiate lung tumors and abnormal lymph nodes based

on the degree of overlap between the detected abnormality and the lung fields.5

The main problem is how to estimate the original lung fields if the subject had

been healthy. Limited studies exist in this area, and are mostly based on statis-

tical shape model,25,26 with time-consuming registration25 or complex landmark

detections.26

Since precise lung segmentation is not required for lesion detection, but a fair

estimation of the overlap would suffice, we design a simpler atlas-based approach.

Our design is similar to the approach27 that obtains brain segmentation masks from

multiple weak segmenters. Different from local-level computation,28 the regression-

based combination27 minimizes the weighted difference for the whole image. How-

ever, its direct derivation of segmentation from other labeling outputs might impose

a stringent requirement on the weight learning, which would be difficult to apply to

the thoracic images due to the large variations of anatomical structures caused by

lesions. This motivates us to opt for an indirect approach, with intermediate multi-

atlas modeling of the feature space and a further classification for final labeling.

Our approach5 consists of the following steps. All abnormalities are detected

via region-based classification. Then, the actual lung structure is estimated, with

regression and graph-based techniques. Thirdly, the detected abnormalities are
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classified as tumors or abnormal lymph nodes based on contextual features. Fig. 3

illustrates the overall method.

Fig. 3. Method illustration.5 (a) An axial CT slice (after preprocessing). (b) The co-registered

PET slice, where the dark region indicates a lung tumor with increased FDG uptake and a high
SUV. (c) Output of the initial abnormality detection, showing the lung fields, mediastinum and

abnormality with increasing grayscale values. (d) The appearance model generated with regression,

approximating the CT intensities if without the lung tumor. (e) Output of the graph-based
structure labeling for lung fields and medaistinum. (f) The detection output after tumor/lymph

node classification, with tumor highlighted in red.

1.4.1. Initial Abnormality Detection

The thoracic PET-CT images are first preprocessed to remove the background and

soft tissues outside of the lung and mediastinum with morphological operations. All

images are then aligned and rescaled to the same size. Next, the abnormalities are

detected by classifying the mean-shift clustered regions into lung fields (L), medi-

astinum (M) or abnormalities (O)19 (Fig. 3c). The high-uptake in the myocardium

is masked-out based on its size, spatial location within the thorax and the shape of

the left lung field.

1.4.2. Adaptive Structure Estimation

To differentiate between lung tumors and abnormal lymph nodes, a general rule

is that lung tumors should be inside the lung fields, while lymph nodes are out-

side. However, as shown in Fig. 3c, due to the lung tumor, only a portion of the

right lung field is correctly identified, and the tumor then appears outside the lung

fields. Therefore, we need to estimate the actual lung fields before the tumor growth

(Fig. 3e). Given a 3D thoracic PET-CT volume I, our objective is to label each

voxel i to the lung field or mediastinum type. To do this, the thoracic appearance is

first modeled from a set of reference images, then the voxels are classified as L/M.

Regression-based Appearance Model:

Although patient-specific conditions, such as body weights, introduce variational

factors, there is great similarity between images for the normal structures. It is thus

a fair assumption that one image can be approximated by a weighted combination

of multiple images. Therefore, we model the CT appearance of the original thoracic

structures (Fig. 3d) based on other reference images.

We first introduce a basic formulation for the appearance model. Let y ∈ Rn×1
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be the n-dimensional feature vector (i.e. voxel-wise CT intensities) of I, and D ∈
Rn×K be the matrix of K feature vectors from K reference images Ik (n� K). The

difference between y and the weighted combination of D should then be minimized:

minx ‖ y − Dx ‖22, where x ∈ RK×1 is the weight vector; and Dx is the original

appearance of I approximated.

With the derived x, each reference image Ik is assigned one weight xk, and

hence all voxels in Ik contribute equally to the approximated appearance. However,

due to the non-rigid structure of the thorax and presence of the abnormalities, it

is normal that only a portion of Ik is similar to I and the rest should take lower

weights. Therefore, we incorporate a voxel-wise similarity-based weight vector for

each Ik. For voxel ik of image Ik, the weight wi,k is computed as:

wi,k =
1

αi
exp(− 1

βi
‖ i− ik ‖2), βi =

K∑
k=1

‖ i− ik ‖2 (7)

where αi is to normalize
∑
k wi,k = 1. With the weight matrix W = {wi,k} ∈ Rn×K ,

the regression formulation thus becomes: minx ‖ y − (W ◦D)x ‖22.

Furthermore, while the above formulation is sufficient to obtain a closely match-

ing appearance model, the L/M labeling information is not utilized. Since the final

objective is to achieve accurate structure labeling, it is natural to integrate the

supervised information to enhance the discriminative power:

minx ‖ y − (W ◦D)x ‖22 + ‖ h− (W ◦A)x ‖22
= minx ‖

(
y

h

)
−
(
W ◦D
W ◦A

)
x ‖22 = minx ‖ f − Ωx ‖22

(8)

where h ∈ {1, 2, 1.5}n×1 is the label vector of I from the initial detection outputs

(1=L, 2=M, and 1.5=O), and A ∈ {1, 2}n×K for the reference images from the

ground truth. The value 1.5 is chosen to have equal distance between O/L and

between O/M, to assign no preference for matching such areas with L or M . Both

h and A are normalized to the same range as y and D, and the approximated

appearance model is then (W ◦D)x and the labeling (W ◦A)x.

Finally, to avoid overfitting, we choose to not have all reference images con-

tributing to the appearance approximation, with a sparse regularization:

min
x
‖ f − Ωx ‖22, s.t. ‖ x ‖0≤ C (9)

where C is the constant number of reference images we limit to. The OMP algo-

rithm29 is then used to solve x.

To compute the feature vector y, we divide I into multiple sections, each with

three slices, and y is then derived for each section. To construct D, since the refer-

ence images also contain lung tumors or abnormal lymph nodes, rather than simply

concatenating all voxels, the annotated tumor voxels are replaced with the average

intensity of the lung fields labeled at the initial detection step.
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Graph-based Structure Labeling:

Next, based on the appearance model (Fig. 3d), we classify the lung fields and

mediastinum (Fig. 3e). A straightforward idea is to use the approximated labeling

(W ◦ A)x as the classification output. However, such labelings can be erroneous

especially for the boundary areas of tumors. Therefore, we design a further graph-

based classification step for the structure labeling.

We first define a notation for the appearance model: G = {gi} = (W ◦ D)x,

where gi is the approximated intensity for voxel i. The problem is thus to derive a

label set V = {vi ∈ {L,M}}, to classify each voxel to category L or M.

We observe that the mislabeled parts usually appear lighter in G but still darker

than the real mediastinum. This thus motivates us to encode contrast information

for the labeling. To do this, from G, we first calculate the mean values (m) and

the graylevel histograms (d) of the lung field and mediastinum (labeled during the

initial abnormality detection). A 5-dimensional feature vector qi is then computed

for each voxel i: (i) gi; (ii) gi/mL; (iii) gi/mM ; (iv) Pr[gi ≤ dL ≤ 256]; and (v)

Pr[1 ≤ dM ≤ gi].
In addition to qi, which incorporates the global-level information m and d, con-

trast information can also be described in a pairwise fashion. Specifically, for two

voxels i and j, if gi and gj are similar and they are spatially close, they would likely

take the same label. Hence we define the difference si,j between i and j based on

their intensity | gi − gj | and spatial ‖ i− j ‖2 distances:

si,j = log(‖ i− j ‖2 +1)× log(| gi − gj | +1) (10)

A lower si,j would imply a higher probability of vi = vj .

We then design a CRF construct to integrate both qi and si,j to label G, with

the following energy function:

E(V |G) =
∑
i

φ(vi) +
∑
i,j

ψ(vi, vj) (11)

Here φ(vi) represents the cost of i taking the label vi, computed as 1−p(vi|qi); and

p(.) is the probability estimate from a binary liner-kernel SVM classifier based on

qi. The pairwise term ψ(vi, vj) penalizes the labeling difference between i and j.

Note that our pairwise term connects longer distance voxels to encourage consis-

tent labelings for similar voxels, not limited to neighboring voxels as the traditional

CRF construct. However, to ensure a sparse graph, a voxel i should be linked to a

small number of other voxels only. Therefore, we introduce a constant threshold tr,

so that si,j = 0, if | gi − gj |> tr. The labeling set V is then derived by minimizing

E(V |G) using graph cut.

1.4.3. Feature Extraction and Classification

Based on the estimated thoracic structure V (Fig. 3e), we then classify the detected

abnormalities (O) into tumors (T) or abnormal lymph nodes (N) (Fig. 3f). A simple
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Table 2. The detection recall and precision.

Tumor Node Tumor19 Node19

Recall (%) 90.7 88.6 84.4 77.8

Precision (%) 89.1 88.6 83.8 76.9

4-dimensional feature vector is designed: (i) size of O; (ii) size of overlap between

O and lung field labeled in V ; (iii) size of overlap between O and mediastinum

labeled in V ; and (iv) size of overlap between O and the convex hull of lung field

detected during initial abnormality detection. Features (ii)–(iv) are also normalized

by the size of O. A binary linear-kernel SVM is then trained to classify O to T or

N. To enhance the error tolerance, the classification is performed on a section basis

as well, and the final T/N label is produced based on a weighted averaging of the

probability estimates from each section. The weights are computed as exp(−d/η),

where d is the distance between the section and center of O, and η is the maximum

distance possible for O.

1.4.4. Experimental Results

The experiment was performed on 50 sets of 3D thoracic PET-CT images from

patients with NSCLC. A total of 54 lung tumors and 35 abnormal lymph nodes

were annotated as the ground truth. For each data set, the contour of lung field

was also roughly delineated – we allowed some error margins in the delineation

since we did not expect precise lung segmentation. Five images were selected as the

training set for both structure labeling and classification between tumors and lymph

nodes. The data sets were then randomly divided into five sets; and within each

set, each image was used as the testing image, with the other nine as the reference

images.

The usefulness of each components in the structure estimation was first ana-

lyzed. With the proposed graph-based structure labeling, we evaluated the ap-

pearance model with different constructs of the regression method. With the fixed

regression-based appearance model, we then evaluated the structure labeling with

different graphical constructs. The results clearly demonstrated the advantage of

our proposed appearance model and the structure labeling. The overall detection

recall and precision are shown in Table 2. The results exhibited marked improve-

ment over our previous work,19 especially for the abnormal lymph nodes; and it

suggested the effectiveness of our approach for differentiating the two abnormali-

ties, by mainly analyzing the degree of overlap between the detected abnormality

and the estimated lung structures.
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2. Thoracic Image Retrieval

In the past three decades, the volume of medical image data has rapidly expanded.

Patient images are normally stored in the picture archiving and communication

systems (PACS); and the vast amount of these data also opens an opportunity

for case-based reasoning or evidence-based medicine support.30 When a physician

makes a diagnosis based on a patient scan, the physician may choose to browse

through similar images in the database as a reference set to help reach the correct

diagnosis. The ability to find images with similar content is thus important to

facilitate diagnosis. In this section, we review the state-of-the-art in medical image

retrieval, and describe our approaches3,31 for the thoracic PET-CT.

2.1. Review of State-of-the-art

A typical content-based image retrieval (CBIR) system comprises three main com-

ponents: feature extraction for image representation, similarity measure between

feature descriptors, and image indexing for retrieval.32 In the medical domain,

since different disease patterns and imaging modalities (e.g. X-ray, CT, magnetic

resonance imaging, PET-CT) are best characterized by different types of features,

the majority of image retrieval studies focus on feature extractions,33–39 designed

for specific anatomical structures. The various types of features explored include in-

tensity values,35 textures describing the tissue appearances,34,36,37,39,40 and shapes

of anatomical structures.38 Contextual features describing organ-related spatial

information have also been recently incorporated.36,39,41 However, most of these

contextual features designed still largely resemble the standard feature descriptors,

not optimized for the particular medical imaging problem. As a result, the retrieved

images would still be mainly similar in their visual appearances, but not in terms

of anatomical or pathological information.

In thoracic PET-CT, images representing similar pathological characteristics can

be used as references to achieve accurate staging of NSCLC. The retrieved images

are thus expected to exhibit a similar spatial extent for the lung tumor and disease

spread in regional lymph nodes. Fig. 4 shows tumors in various locations. Studies in

thoracic PET-CT image retrieval include design of overlapping42 and graph-based

features.43 Both approaches rely on segmentation of thoracic structures and lesions,

which however, might not error-prone with simple thresholding-based techniques.

Our initial work44 does not require precise segmentation, but it is designed for 2D

image retrieval only. We have developed various learning-based similarity measure

techniques,19,45,46 which can be integrated with any feature representation.

2.2. Pathological Feature Description

In our work, we first proposed an image retrieval method,3 which finds images

exhibiting similar pathological features that are extracted based on the lesion de-



March 23, 2013 15:59 World Scientific Review Volume - 9.75in x 6.5in paper

Feature-Centric Lesion Detection and Retrieval 15

Fig. 4. Four examples of fused thoracic PET-CT images (transaxial slices). The images depict
tumors at different locations in the lung fields, and in two images showing the tumors adjacent to

the chest wall and the mediastinum.

tection results. As described in Section 1.2, tumors (T) and abnormal lymph nodes

(N) are detected as 3D objects. The feature of a 3D T or N object Fobj is computed

as a weighted combination of the feature vectors Fr of the comprising image slices.

Fr is computed from the bounding box of the T/N region in the image slice. The

weight of an image slice is adaptively assigned as its mean CT intensity and PET

SUV, so that slices with more salient features would carry higher weights. A case

is then represented by two feature vectors FT and FN , characterizing its tumor and

lymph node appearances. The distance between the query case X and the reference

case Y is then defined as the weighted intersection differences, with weights defined

based on the volumes of the T or N objects.

2.3. Spatial Feature Encoding

The simple pathological feature description is usually insufficient to represent the

large variations in spatial contexts of different cases, and would thus impact the

retrieval performance. The most widely used spatial feature descriptor is the circular

or square histogram.36,47,48 The drawback of these feature descriptors is that they

might not accommodate spatial variations well, due to the fixed grid structures.

The hierarchical subdivision scheme, such as spatial pyramid matching (SPM),49,50

are able to balance between the subdividing and disordering to a certain extent

with a multi-scale design. We have designed spatial descriptors51,52 based on the

concept of SPM. However, such approaches might be still too rigid to handle the

large inter-subject variations because of the even subdivision.

To better describe the pathological features, we then proposed a hierarchical

contextual spatial descriptor,31 with an adequate balance between its discriminative

capability and geometric-transformation invariance suitable for the thoracic imaging

domain. Fig. 5 gives an overview of the proposed method.

2.3.1. Pathological Centroid Detection

To build the spatial descriptor, we first detect the centroid of the pathology, which

is the geometric center of a tumor. To do this, we first extract the maximally stable

extremal regions (MSER)53 from the image grid of feature words WI . Next, the

region of pathology is selected from the MSER outputs, by choosing the inner-most

region that normally represents the center area of the tumor. The geometric center
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of this detected region is thus the tumor centroid, and denoted by the patch index

as po (example as illustrated in Fig. 5).

Fig. 5. Illustration of the proposed feature extraction and representation.31 (a) A fused PET-CT
slice, showing a primary lung tumor. (b) The feature-word grid, representing each image patch

with its feature word value. (c) The hierarchical partition of the spatial contexts, showing only

the level-2 structure for simplicity, with the red dot indicating the tumor centroid po, green circles
depicting the concentric circles, and orange lines dividing the radials.

2.3.2. Context-based Partitioning Model

Based on the grid of feature words WI and the pathological centroid po, we then

formulate the spatial features using a context-based partitioning model. We in-

corporate the hierarchical partitioning concept similar to SPM; but rather than

dividing a rectangle cell evenly into 4 sub-cells as in SPM, we design a hierarchical

circular structure, as illustrated in Fig. 5. The circular model is more suitable here

mainly because: (1) usually tumors are close to blob-like shapes; and (2) anatomi-

cal structures surrounding the tumors can be better fitted into radials rather than

rectangles.

We define L as the total levels of hierarchy, with individual levels l ∈ {0, 1, ..., L−
1}. At each level l, 4l radials are created with the partitions of 2l−1 concentric circles

while each circle is divided into 2l+1 radials. The overall spatial descriptor HI of

image I is concatenated from the feature vectors of individual levels: HI = {H l
I :

l = 0, ..., L− 1}, with a dimension of K
∑L−1
l=0 4l.

At level-0, there is actually no partitioning, and a circle OI centered at po is

created with radius rI the largest distance between po and the image border. All

feature words in OI are accumulated into a weighted histogram H l=0
I , with each

feature word wi Gaussian weighted according to its Chebyshev distance from po. At

level-1, the circle OI is evenly divided into J = 4 radials OI = {RI,j : j = 1, ..., J}
from the centroid po. The feature vector of each radial is then computed in the

same way as level-0. At a higher level (l ≥ 2), 4l radials are then created from OI
in a similar way.

When creating the radials, rather than partitioning at fixed angles, our approach

is to create a partition that minimizes the co-occurrences of multiple structure types

within one radial, to reduce fragmented segments due to dividing in homogeneous

regions. Denote the jth radial as RI(j, θ) with θ representing the direction of the
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basis radial. The total variance vI(J, θ) of such a partition is:

vI(J, θ) =

J∑
j=1

N∑
i=1

(wi −mj)
2, s.t. pi ∈ RI(j, θ) (12)

where mj is the mean of the feature words of radial RI(j, θ). The best

partition structure is thus the one resulting in the smallest variance: θ =

argminθvI(J, θ), ∀θ = {0, π2J ,
π
J ,

3π
2J }. Here we choose to test four possible θ only,

for convenient implementation and better efficiency.

2.3.3. Similarity Measure

To measure the degree of similarity between two images I (the query image) and J

(the reference image), we compute the difference between feature descriptors HI and

HJ as a weighted histogram-intersection distance.19 Images with smaller distances

with the query image I are then retrieved as the searching results.

2.3.4. Experimental Results

For evaluation, a PET-CT database containing 50 sets of image scans from subjects

diagnosed with NSCLC was used. We selected three key slices depicting the primary

lung tumor from each patient scan, forming a database of 150 PET-CT slices. The

ground truth indicating the similar or dissimilar relationships between each pair

of slices were annotated. Two images were considered similar, if the tumors were

in similar locations in the thorax (e.g. anterior or posterior), and showed similar

spatial relationships relative to the chest wall and the mediastinum.

The retrieval performance was quantitatively compared with other methods,

including two previous approaches proposed for tumor retrieval on PET-CT im-

ages,19,52 and several techniques based on more standard algorithms (bag-of-words,

SPM, and SIFT54 features). Our proposed approach demonstrated clear perfor-

mance improvements.

3. Summary

We have presented a brief review of our recent work on lesion detection and image

retrieval for thoracic PET-CT imaging. For lesion detection, we described three

different methods: region-based feature classification, multi-stage discriminative

model, and data-adaptive structure estimation. While the second method is highly

effective with its structural labeling and more discriminative features, the third

approach requires only a simple feature set that is less empirical. For image retrieval,

we described two different methods: pathological feature description, and spatial

feature encoding. The second method presents a more discriminative hierarchical

contextual spatial descriptor and improved the retrieval performance significantly.

It is also worth noting that while some of the approaches, such as the region-based
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classification and multi-stage discriminative model, were customized towards the

specific problem domain, the data adaptive structure estimation and spatial feature

encoding are more general and can be extended to other imaging applications.
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