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Abstract. Object localization is an important step common to many
different medical applications. In this Chapter, we will review the chal-
lenges and recent approaches tackling this problem, and focus on the
work by Song et.al. [20]. In [20], a new graphical model with additional
contrast and interest-region potentials is designed, encoding the higher-
order contextual information between regions, on the global and struc-
tural levels. A discriminative sparse-coding based interest-region detector
is also integrated as one of the context prior in the graphical model. This
object localization method is generally applicable to different medical
imaging applications, in which the objects can be distinguished from the
background mainly based on feature differences. Successful applications
on two different medical imaging applications – lesion dissimilarity on
thoracic PET-CT images and cell segmentation on microscopic images –
are demonstrated in the experimental results.

1 Introduction

A wide variety of medical applications comprise object localization as an impor-
tant step for discovering the anatomical or pathological information from images.
For example, region-of-interest (ROI) detection is helpful for early screening of
diseases; and lesion segmentation is useful for treatment planning. We consider
object localization as a generalization of both detection and segmentation, with
both automatic identification of ROI, and a good delineation of its boundary.

We focus on medical imaging problems in which objects can be localized
based on local-level features and feature differences between the objects and
background. For example, in positron emission tomography – computed tomog-
raphy (PET-CT) images, abnormalities typically show higher uptakes than nor-
mal tissues. In fluorescence microscopic images, the cell nuclei normally depict
darker colors then the other cell structures and the background. In brain mag-
netic resonance imaging (MRI), the white and gray matter display quite different
intensities and spatial patterns.

Local features are usually not sufficient for a good localization, because of
large inter-subject variations causing same anatomical structures appearing quite
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differently across images. The problem is further complicated due to low feature
differences between different tissue types and especially for the boundary areas
between the objects and background. In addition, pathologies often lead to larger
imaging variations, and an accurate object localization is thus more challenging.

For such imaging problems, while lots of work have been reported [25, 16, 19,
5, 18, 4, 21, 15], they are mostly designed to be domain specific; and often rely on
sophisticated feature sets, which can be computational-intensive and difficult to
adapt to other imaging problems. Furthermore, because such features are usually
designed based on domain knowledge and empirical studies, their effectiveness
may be restricted to the limited scenarios available in the datasets.

Therefore, in [20], we proposed an object localization method that can be
generally applicable, requires simpler feature sets, and addresses low feature
differences and large inter-subject variations. With region-based labeling, each
image region is classified as the object or background to produce the localization
output. In summary, our main contributions are the following: (i) the discrimi-
native capability of the basic conditional random field (CRF) is enhanced with
two contextual priors, namely the contrast and interest-region potentials, to en-
code the global contrast information and region-based feature similarities, for
improving the boundary delineations; (ii) a sparse-coding classification method
is proposed for interest-region detection, with improved discriminative power of
the learned dictionaries; and (iii) the design is kept general with simple feature
sets configurable for the specific application, and has been successfully applied
to both lesion dissimilarity on thoracic PET-CT images and cell segmentation
on microscopic images.

Related Work. We focus our review on CRF-based localization methods in
both medical and general imaging domains. As an undirected graphical model,
CRF is now one of the most successful trends in object class image segmentation
[6]. The basic and most commonly used formulation is to have local features rep-
resented as graph nodes and consistency constraints between neighboring regions
as edge connections [17]. However, comparing to the non-graphical discrimina-
tive approach, generally such models add advantages little more than spatial
smoothing of labelings [25].

Higher-level features, i.e. contexts in images, are often acknowledged as im-
portant discriminative factors [6, 4]. In particular, relationship information on a
larger scale, such as those across image slices [8], relating to reference objects
[2], or between distant image regions [7], can be modeled as pairwise connec-
tions to encourage labeling consistency or enhance the discriminative power of
local features. Such ideas of connecting beyond immediate neighbors are inspir-
ing; however, choosing the related pairs and describing their interactions are
rather application specific. To explore multi-scale region interactions, hierarchi-
cal models have been proposed [11, 3]; however, they are normally created based
on region clustering, without considering the actual object structures. At a more
structural level, object detectors with bounding box outputs have been incorpo-
rated into CRFs as consistency constraints [12, 6]. Although the idea is sound,
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such methods are normally built based on well-established object detectors and
thus require only simple interaction modeling; but both assumptions are not
suitable for our problem domain.

2 Object Localization

Given an image I, we first oversegment it into a set of regions {rp}, using quick-
shift clustering [24], to incorporate superpixel-level information around the pix-
els. The objective of object localization is then to derive a binary mask L = {lp},
with each lp ∈ {0, 1} indicating whether the region rp belongs to the object.

2.1 The Proposed CRF Model

We formulate the object localization problem as a binary labeling task using a
new CRF model, with the following energy function:

E(L|I) =
∑
p

φL(lp)︸ ︷︷ ︸
local

+
∑

(p,q)∈NS

ψS(lp, lq)︸ ︷︷ ︸
smooth

+

∑
(p,c)∈NC

ψC(lp, lc)︸ ︷︷ ︸
contrast

+
∑

(p,i)∈NR

ψR(lp, li)︸ ︷︷ ︸
interest-region

(1)

where the set of random variables or nodes of the graph is denoted by L =
{{lp} ∪ {lc} ∪ {li}}, including the new auxiliary nodes from the contrast (lc)
and interest-region (li) potentials. The probability of a certain configuration is a
conditional distribution on the energy function E(L|I), and the optimal labeling
is derived by minimizing the total energy using the graph cut [10].

The local potential φL(lp) describes the cost of rp labeled as 0 or 1:

φL(lp) = 1− P (rp = lp|fp) (2)

where fp is the local feature vector of rp, and P (.) is the probability estimate of
labeling obtained using a binary support vector machine (SVM).

The smooth potential ψS(rp, rq) penalizes the differences in labeling of the
neighboring regions rp and rq based on their feature distances with a Potts
model:

ψS(lp, lq) = exp(−‖ fp − fq ‖
2

2βS
)1(lp 6= lq) (3)

where βS is the normalization factor as the average of all L2 distances between
neighboring feature vectors in I. The regions rp and rq are considered neighbors
if they share some common border in I, and the set of all neighboring pairs is
denoted by NS .

While the first two potentials follow the standard CRF constructs (Fig-
ure 1a), we describe the contrast and interest-region potentials (ψC , ψR, NC
and NR) in the following.
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Fig. 1. The proposed CRF model. (a) The standard CRF construct, with nodes rep-
resenting the image regions and edges linking the neighboring regions. (b) Introducing
two auxiliary nodes (object and background) for the contrast potential, with edges
linking the image regions and the auxiliary nodes (showing only one set of edges for
easier viewing). (c) Based on the detected interest region (purple circle), an auxiliary
node for the interest-region potential is added, with edges linking all image regions in
the interest-region and the added node.

2.2 Contrast Potential

To improve the labeling accuracy, we want to explore the contrast information
in the image I, with the following motivations. Across different images, there
are often large inter-subject variations, causing overlaps between the feature
ranges and hence misclassifications. Nevertheless, within one image, there is
always a certain degree of contrast between the objects and background; and
the contrast information helps to discriminate between the two types. To encode
the contrast information, two additional nodes corresponding to the object and
background, namely the contrast nodes loc and lbc, are then added to the graph.
A pairwise connection between the image region lp and each of the two nodes
is also established (Figure 1b), and NC denotes the set of all such pairwise
connections. With such a construct, we expect to encourage the same labelings
between the image region and contrast nodes if they exhibit similar features,
and also different labelings otherwise.

To do this, we first define the unary potentials of the two contrast nodes:

φC(lo/bc ) =

{
0 if l

o/b
c = 1/0

C otherwise

}
(4)

where C is a large constant, so that large costs are assigned to loc 6= 1 and lbc 6= 0
and 0 costs otherwise, to effectively fix the labelings of the two nodes in the
inference results.

We then define the pairwise potentials for the edges (lp, lc) with the following.
First, based on the labeling outputs with local features only (Eq. (2)), we ob-
tain the initial estimation of the objects and background areas, and two feature
vectors foc and f bc are then derived for the estimated objects and background
(details of feature derivation in Sec 4). Next, we compute the contrast features
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between rp and the objects and background as gp = {fp, fp/foc , fp/f bc }, and
classify the feature gp to two classes – likely or unlikely to represent the object,
denoted as likely(1) and unlikely(1) – using a binary SVM. Then, based on the
probability estimates γp of class likely(1), the pairwise costs are computed as:

ψC(lp, l
o
c) =


0 if lp = 1, and likely(1)

1− γp if lp = 1, and unlikely(1)

γp if lp = 0

 (5)

ψC(lp, l
b
c) =


0 if lp = 0, and unlikely(1)

γp if lp = 0, and likely(1)

1− γp if lp = 1

 (6)

Note that because of the likely and unlikely terms, the above pairwise po-
tentials no longer follow the Potts model, and penalize labeling consistency if the
features of the image regions and the contrast nodes are actually dissimilar. The
total energy of the contrast potential can however, be rewritten in the follow-
ing format, to keep it submodular (binary and with pairwise term encouraging
consistency) for efficient graph-cut energy minimization:∑

(p,c)∈NC
ψC(lp, lc) =

∑
c φC(lc)+∑

p αp1(unlikely(lp)) +
∑

(p,c)∈NC
αp1(lp 6= lc)

(7)

where αp = γp if lp = 0, and αp = 1− γp otherwise.

2.3 Interest Region Potential

Although the contrast nodes represent the object and background regions of
an image I on a global scale, the structural information between image regions
is not explored. An obviously important structural information is that, regions
that are likely parts of the same anatomical or pathological structure should
take the same labelings. In our formulation, the hypothesis is that, if we can
detect a set of structures, i.e. interest regions Ri, the comprising regions rp ∈ Ri
should preferably be assigned to the same category, but also depending on their
individual suitability of such an labeling. The advantage of such an approach
is that, we can employ a totally different method to detect the interest regions
(e.g. non-CRF and different features), so the generated regions can serve as a
second opinion to refine the object localization.

Assume a set of interest regions Ri are detected from an image I (details in
Sec 3), and each interest region is characterized by its feature fi, most probable
label l∗i ∈ {0, 1} and a set of image regions rp covered. Note that rp might
partially overlap with Ri especially around the boundary areas of Ri, and hence
not all rp covered by Ri should have the same label as l∗i . To determine the the
probability of lp = l∗i , we first compute the following feature vector:

vp = {∩(rp, Ri)/rp, ‖ fp − fi ‖, fi−p/fi} (8)
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which represents the degrees of area overlap and feature homogeneity between
rp and Ri, with fi−p denoting the feature of Ri excluding rp. Then a binary
SVM is trained to classify vp into same or diff categories, indicating if lp = l∗i
or otherwise, and the probability estimate of lp = l∗i is denoted by θp,i.

Next, to integrate the interest-region detection hypothesis into the CRF for-
mulation, for each Ri detected, a node li is added to the graph, with the unary
potential φR(li) defined similarly to Eq. (4). An edge is then connected between
each pair of (lp, li) for all rp ∈ Ri (Figure 1c) with NR denoting all such edges
for image I, and we define the pairwise potential as:

ψR(lp, li) = θp,i1(lp 6= li) (9)

Since rp ∈ Ri is quite likely to exhibit the same labeling as Ri, we choose to use
the Potts model to encourage such consistency. The cost of different labelings
is directly related to the probability of lp = l∗i , and hence we use θp,i as the
pairwise cost. If rp is less likely to be labeled as l∗i , the use of θp,i is also able to
lessen the consistency constraint.

With the above definitions, the total energy term of the interest-region po-
tential is thus rewritten as the following:∑

(p,i)∈NR

ψR(lp, li) =
∑
i

φR(li) +
∑

(p,i)∈NR

θp,i1(lp 6= li) (10)

2.4 Graph Inference

All energy terms are given equal weights (based on our empirical evaluation),
and piecewise learnings of the probability estimates used in the local, contrast
and interest-region potentials are conducted first. The binary inference problem
L∗ = argmin E(L|I) is then solved efficiently using the graph cut.

3 Detection for Interest Region Potential

Due to our motivation of detecting the interest regions in a totally different
way from the graph-based approach to support the interest-region potential (Sec
2.3), we choose to design a sparse-coding based classification method for interest-
region detection. Besides its popularity and widely demonstrated effectiveness
[14], we believe sparse coding can be particularly suitable for our problem be-
cause of the large variations in the dataset.

3.1 Sparse Coding for Classification

Let Y be a set of n-dimensional data samples Y = {yj : j = 1, ..., J} and Y ∈
Rn×J . A representative dictionary for Y with K atoms is denoted as D = {dk :
k = 1, ...,K} ∈ Rn×K . Each yj can then be represented as a linear combination
of a few (i.e. ≤ T ) atoms in D with minimum reconstruction error, and the
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corresponding coefficient vector xj is the sparse code. Denoting the set of sparse
codes of the data samples Y as X = {xj : j = 1, ..., J} ∈ RK×J , both the
dictionary D and sparse coding X can be learned with K-SVD [1] by solving the
following problem:

〈D,X〉 = argmin
D,X

‖Y −DX‖22 s.t.∀j, ‖xj‖0 ≤ T (11)

where ‖Y −DX‖22 represents the reconstruction error.
Once the dictionary D is learned, a given data sample y can then be rep-

resented as a sparse code x by solving the following using the OMP algorithm
[23]:

x = argmin
x

‖y −Dx‖22 s.t. ‖x‖0 ≤ T (12)

A classifier (e.g. SVM) can then be trained based on a set of such sparse codes,
so that x and hence y can be classified.

In our context, an image I is divided into grid-based patches, and each image
patch is represented by its feature descriptor y. The dictionary D is generated
with a training set Y , and each image patch is then classified as interest region
or otherwise (h ∈ {1, 0}) based on its sparse code x.

3.2 Discriminative Sparse Learning

A shortcoming with the above approach is the separation of the dictionary learn-
ing and classifier training, hence the learned dictionary might not produce dis-
criminative sparse codes for the classification. Several approaches have thus been
proposed to integrate the two steps of learning [9]. However, it is observed that
such an integrated approach is still largely optimized for the reconstruction term,
which may affect the discriminative power of W . Therefore, we suggest that the
integrated learning for dictionary D should not totally replace the separate clas-
sifier training, and propose a different method as follows.

First, for the data samples Y ∈ Rn×J , we create a corresponding labeling
vector H = {hj} ∈ {−1, 1}1×J , with 1 for interest region. Based on linear-kernel
SVM, the optimization objective of the weight vector w ∈ R1×K is:

argminw,ξ,b
1
2‖w‖

2 + C
∑
j ξj

s.t. ∀j, hj(w ∗ xj + b) ≥ 1− ξj , ξj ≥ 0
(13)

Combining Eq. (11) and (13), and by simplifying the complexities caused by the
inequality constraints on ξj and the signed hj , we relax the formulation based
on least squares SVM (LS-SVM) [22] as:

〈D,X,w〉 = argminD,X,w ‖Y −DX‖22 + ‖w‖2 +
∑
j ξ

2
j

s.t. ∀j, ‖xj‖0 ≤ T, hj(w ∗ xj + b) = 1− ξj
(14)
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By combining w and b, and substituting ξj , the problem is then equivalent to
the following:

〈D′, X ′, w′〉 = argminD′,X′,w′ ‖Y −D′X ′‖22 + ‖w′‖2+

‖H − w′X ′‖22 s.t. ∀j, ‖x′j‖0 ≤ T
(15)

where w′ = [w, b] ∈ R1×(K+1) and X ′ ∈ R(K+1)×J appended an addition dimen-
sion with constant value 1 to absorb b, and D′ ∈ Rn×(K+1) with an additional
atom to be dimensionally compatible with X ′. To solve Eq. (15), an alternative
approach is used, as detailed in [20].

4 Experimental Results

4.1 Results on Lesion Dissimilarity

Measuring lesion similarity is important in many medical applications, such as
content-based image retrieval for diagnosis referencing. In our approach, first,
lesions (i.e. lung tumors and abnormal lymph nodes) in thoracic PET-CT im-
ages are localized in each image slice with the proposed method. Second, their
textural and spatial features are extracted in 3D. Lastly, a weighted histogram-
intersection is used to compute the feature distance. The actual implementation
details are referred to [20]. The datasets comprise of 40 thoracic PET-CT 3D
image sets from non-small cell lung cancer studies. A total of 64 lesions includ-
ing lung tumors and abnormal lymph nodes are annotated, and the similar-
ity/dissimilarity relationships between each pair of 3D image sets are marked as
the ground truth. Three image sets showing typical thoracic characteristics are
selected for training, and testing is performed on all image sets.

(a) (b) (c) (d)

Fig. 2. Two example localization outputs. (a) Transaxial CT image slices (showing
the thorax after preprocessing). (b) Co-registered PET image slices. (c) The labeling
outputs using standard CRF, with dark gray for lung field, light gray for mediastinum
and white for lesion. (d) Our localization outputs with the two additional potentials,
with lesions highlighted in orange.
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Figure 2 shows examples of the lesion localization. The first example illus-
trates the benefits of the contrast potential, in which the lesion is initially not
detected with standard CRF, due to the relatively low PET intensities. The
interest-region potential is particularly useful in refining the lesion boundaries,
which tend to be underestimated with the standard CRF, as shown in the second
example. It is observed that, the standard CRF tends to produce a large number
of either totally undetected or underestimated lesions. Based on the measured 3D
object-level localization results, we summarize the localization recall, precision
and F-score in Table 1.

The localized lesions are then used to retrieval images with similar lesions.
The retrieval tests are performed by using each 3D image set as a query image,
and the remaining 39 images are ranked accordingly. We compare the retrieval
performance with three other approaches: (i) state-of-the-art of thoracic PET-
CT image retrieval [18]; (ii) spatial pyramid matching (SPM) with local intensity
features extracted from grid-based image patches; and (iii) bag-of-words with
SIFT descriptor. As shown in Figure 3, our proposed method exhibits the highest
retrieval precisions for all recall levels.

Table 1. The localization performances comparing our proposed method with standard
CRF.

Recall (%) Precision (%) F-score (%)

Ours 97.0 95.4 96.2

CRF 76.6 94.2 84.5

4.2 Results on Cell Segmentation

Cell nucleus segmentation is one of the most important tasks in analyzing and
quantifying fluorescence microscopic images. In our approach, the cell nucleus is
localized using the proposed method; and since the localization results also tend
to delineate the nucleus boundaries closely, such an approach can be directly
used for segmentation. The actual implementation details are referred to [20].
The serous database [13] is used to evaluate the cell segmentation. The database
contains 10 microscopic images. A total of 254 cell nuclei are present in the
images, with ground truth of cell nuclei segmentation provided. Same as [4], half
of the images are used for training and the others for testing.

To evaluate the segmentation performance, we compute the PASCAL VOC
criteria of pixel- and object-level accuracies, both as TP/(TP+FN+FP). We
also compare our results with three approaches: (i) L+S, the standard CRF with
local and smooth potentials; (ii) L+S+C, with additional contrast potential; (iii)
L+S+R, with additional interest-region potential; and (iv) the state-of-the-art
discriminative labeling method [4] reported for the same database. As listed
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Fig. 3. The retrieval precision and recall.

Table 2. The segmentation results comparing various methods.

Ours L+S L+S+C L+S+R [4]

Pixel Acc (%) 85.6 82.0 83.1 84.6 85.1

Obj Acc (%) 89.3 84.5 86.2 88.7 84.0

in Table 2, our method achieves the highest pixel- and object-level accuracies.
The improvements of having the contrast and potential terms are evident. The
performance difference between L+S and [4] suggests that if we incorporate the
feature set of [4], the segmentation accuracies would be further improved. By
replacing the interest-region detection with standard sparse-coding classification,
it is found that our proposed method exhibits on average 1.1% improvement for
both pixel- and object-level measurements with the new approach.

The first example shown in Figure 4 indicates that our method is quite ef-
fective in removing the cytoplasm areas that connect the cell nuclei. As shown
in the second example, lighter intensities of the cell nuclei cause many false neg-
atives with the standard CRF approach; and our result shows more accurate
delineations of the actual contours.

5 Summary

In this Chapter, we describe a new method for object localization in medical
images [20]. A new CRF model with additional contrast and interest-region po-
tentials is proposed for effective object localization, addressing large inter-subject
variations and low feature differences between the objects and background. A
new sparse-coding classification approach is also designed for the interest-region
detection, with enhanced discriminative power of the learned dictionaries. The
proposed method is applied to lesion dissimilarity on thoracic PET-CT images,
and cell segmentation on microscopic images, and shows higher performance
compared to the state-of-the-art techniques.



Object Localization with Graphical Model 11

(a) (b) (c)

Fig. 4. Two example segmentation results. (a) Cropped microscopic images, with or-
ange circles delineating the segmentation ground truth. (b) The segmentation results
with L+S. (c) The segmentation results of our proposed method.
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