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ABSTRACT
We present a region-based image retrieval framework for
multi-modality, positron emission tomography - computed
tomography (PET-CT), images. An image retrieval system
can be used to assist the diagnostic process, by providing
reference cases that contain similar scans to the interpreting
clinicians. PET-CT scans are essential tools for the accu-
rate staging of lung cancer and provide co-registered func-
tional (PET) and anatomical (CT) information from a sin-
gle scan; the complexity of these data, however, place new
challenges in computerized image analysis and retrieval.
The choice of a region-based method was inspired by the
objective of retrieving images with similar patterns of dis-
ease involvement, where there is a parenchymal lung tumor
and disease in regional lymph nodes. Our results on clinical
data from lung cancer patients show a higher retrieval pre-
cision over the usual techniques and the other non-region
based methods.
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1 Introduction

Advances in medical imaging instrumentation have re-
sulted in a marked increase in the number of images that
are available for each patient study. The patient imaging
studies are generally archived in large databases and search
methods of these databases, which rely on text-based ap-
proaches, are problematic. Hence new techniques that in-
clude content-based image retrieval (CBIR) have been pro-
posed [1].

In this work our focus is PET-CT images. PET-CT
scanners combine a helical CT and a PET scanner and pro-
duce anatomical and functional patient information from
the single scan. For routine clinical diagnosis PET scanners
use a PET tracer 18F-fluoro-deoxy-glucose (FDG), which is
taken up by tumor cells relative to the normal lung and nor-
mal lymph nodes. Lung cancer (non small cell lung can-
cer NSCLC) is among the most common malignancies in
the developed and developing world and PET-CT is now

accepted as the best imaging technique to accurately deter-
mine the extent (stage) of NSCLC. The extent of disease
determines the best approach to therapy.

The consistent and accurate interpretation of PET-CT
data, however, is not a trivial task. PET images have lower
resolution that the CT images and do not delineate the pre-
cise location of a tumor or its boundaries, but PET can
detect disease in non-enlarged lymph nodes. CT depicts
anatomy but has poor soft tissue contrast resolution, has
difficulty in separating tumors from normal surrounding
tissues and disease in lymph nodes is determined by an in-
crease in size of the node. Further, there is a learning curve
associated with the accurate interpretation of the various
findings in patients with NSCLC on PET-CT and can be
problematic for an inexperienced reader.

Our aim was to develop a CBIR framework for PET-
CT lung images. For a query image of the thorax, the sys-
tem is expected to retrieve visually similar images from
previously studied cases. Readers can then retrieve images
that have been previously associated with diagnostic infor-
mation to aid their interpretation. We have limited our at-
tention to thoracic PET-CT images rather than the entire
torso, which is usually the case in clinical practice for stag-
ing NSCLC.

There are few publications on image retrieval for tho-
racic PET-CT images. Kim et al. [2] used an approach
where retrieval performance relied heavily on segmenta-
tion accuracy. Song et al. [3] proposed a retrieval that re-
quired less accurate segmentation of the lung fields and it
searched similar images based on grid-based feature his-
tograms with foreground and background differentiation.
Both these methods applied only to the lung fields and pul-
monary hilar regions and the mediastinum. The regional
lymph nodes at the hilar and mediastinum are often the first
sites of disease spread in NSCLC.

In CBIR research, local approaches such as the bag-
of-features method are generally used. In this approach, a
set of features are computed for every pixel, or a block of
pixels, then the set of features are compiled as a histogram
of feature occurrences. A shortcoming of such methods lies
with the histogram representation, which ignores the loca-



tion of feature bins, and they fail to identify objects based
on collective information from adjacent blocks [4]. Less
commonly, region-based image retrieval has been used. As
regions of a certain level of homogeneity of texture and
shape are often considered to represent an object in an im-
age, region-based approaches have gained favor in prob-
lem domains where images contain some distinctive ob-
jects amidst background [4, 5].

We chose to employ region-based image retrieval due
to its similarity to the normal visual perception of tho-
racic PET-CT images, whose characteristics are mainly de-
scribed by the salient regions of the lung tumor and re-
gional lymph nodes. However, region-based techniques are
affected by segmentation accuracies. Our method was de-
signed to reduce the effect of segmentation inaccuracies,
while avoiding a complicated and time-consuming segmen-
tation procedure. We have organized our paper as follows:
a) Section 2 gives an overview of our image retrieval frame-
work. b) Section 3 describes the clustering-based approach
for region delineations. c) In section 4 we expand upon the
details of similarity measure function with learning-based
methods. d) In section 5 we present the experimental meth-
ods. e) The results are presented in section 6.

2 Overview of Our Approach

Our framework consists of: extraction of the lung and me-
diastinum from transaxial PET-CT image pairs, clustering-
based region delineation, extraction of regional texture and
structural features, and learning-based similarity measure
for distance computations and image retrieval. A raw PET-
CT image pair from a patient diagnosed with NSCLC is
shown in Figure 1.

2.1 Lung and Mediastinum Extraction

As a pre-processing step, the lung and mediastinum were
extracted. The extraction process started with histogram
equalization and Otsu thresholding to remove the patient
bed and soft tissues outside the lung fields with simple sub-
traction and filling operations. Connected component anal-
ysis was then performed to approximate the contours of the
lung fields. The area enclosed by the left and right lung
fields was marked as the mediastinum. The resulting mask
was mapped to the PET image, which was also normalized
into standardized uptake values (SUV) by normalization of
the FDG uptake with the injected dose and the body weight
of the patient to reduce inter-patient variability [6].

Our retrieval method was insensitive to the inclusion
of surrounding tissues, so precise segmentation was not
necessary and the pre-processing step was simple and fast.
Some components of vertebral column, ribs and muscles
remained in the resulting image. Figure 2 shows the ex-
traction output of Figure 1. We referred to the extracted
areas as LMCT and LMPET .

(a) (b)

Figure 1. Transaxial PET-CT images from a patient with
NSCLC. (a) CT (b) PET – The focal region of increase
FDG uptake (large black region) reflects the primary lung
tumor in the right lung; it is seen as a region of high den-
sity on CT when compared to normal lung. The smaller,
central focal region of increased FDG uptake is disease in
a mediastinal (right lower paratracheal) lymph node.

(a) (b)

Figure 2. Transaxial images with most of the extrapul-
monary bone and soft tissues removed. (a) CT image -
LMCT . (b) SUV (PET) image - LMPET .

2.2 Region Delineation

A modified fuzzy c-means (FCM) clustering approach in-
corporating spatial and textural information was applied to
segment the LMCT and LMPET image pair into regions.
The clustering process was also adaptive for each individ-
ual image pair, rather than adopting a set of fixed parameter
settings. The method is presented in detail in Section 3.

2.3 Regional Feature Extraction

A 12-dimensional feature vector was extracted for each re-
gion and it contained the following information: (a) texture,
described by mean and variance of the anisotropic diffu-
sion filtering (ADF) filtered LMCT and LMPET , and the
Gabor filtered ones (details of applying ADF and Gabor
filters are described in section 3.1); (b) structure, given by
the size and the eccentricity of the region; and (c) location,
represented by the coordinates of the centroid of the region,
normalized by the dimension of the image.

2.4 Similarity Measure

The similarity measure between two image pairs was
equivalent to computing the distances between two sets of
regional features. L1 or L2 distance was suboptimal be-
cause intuitively salient regions should be more important
for matching different images. Each feature dimension of
the feature vector might carry a different weight. There-
fore, a learning-based similarity measure was designed,



and section 4 presents the details.

3 Clustering-based Region Delineation

To achieve an effective base for the similarity measure,
the regions delineated from the lung and mediastinum had
to fulfil the following criteria: (i) The tumor and disease
in regional lymph nodes should form individual regions.
(ii) Minor anatomical structures, such as segmental artery,
need not form individual regions as they were not important
for identifying similar images. (iii) The number of regions
should be minimized so the possibility of mismatching re-
gions was reduced.

Our choice of fuzzy clustering, in particular, FCM
was because the boundaries of salient regions (e.g. tumors)
were generally not well defined, thus rendering simple k-
means clustering unsuitable. The expectation of having
a fewer number of regions also meant that popular over-
segmentation approaches, such as mean-shift, were not de-
sired.

3.1 Fuzzy Clustering with Spatial and Textural Infor-
mation

A major drawback of FCM is that the clustering is per-
formed at pixel level, and it ignores the spatial and textural
context, which makes it sensitive to statistical noise and has
a tendency to produce non-compact regions [7] (Figure 4a).
This violates our requirement of having regions for major
anatomic structures. Therefore, we enhanced the standard
FCM algorithm by incorporating spatial and textural infor-
mation into the clustering process.

3.1.1 FCM Clustering

The basic form of FCM clustering minimizes the objective
function [8]:

JFCM =

c∑
i

n∑
j

µm
ij ||xj − vi||2, s.t.

c∑
i

µij = 1 (1)

where n is the size of the image, c the number of clus-
ters, xj the jth data vector, vi the ith cluster center, µij the
membership of xj belonging to the ith cluster, and m the
index of fuzziness (usually 2). xj and vi are p-dimensional
vectors, where p is 1 when only gray-level image intensity
was used for clustering.

The optimization problem is solved by iteratively up-
dating the cluster centers and the membership function us-
ing the following equations until the algorithm reaches con-
vergence:

vi =

∑n
j µ

m
ijxj∑n

j µ
m
ij

, i = 1, ..., c (2)

µij =
||xj − vi||−2/(m−1)∑c
k ||xj − vk||−2/(m−1)

, i = 1, ..., c, j = 1, ..., n

(3)

Several methods have been proposed to incorporate
spatial information into FCM by modifying the objective
and updating functions [7, 9]. We chose to expand xj and
vi to include both spatial and textural information, keeping
the above equations relatively unchanged.

3.1.2 Spatial Information

A mean or median filtered image exhibits the local infor-
mation of the pixel at the center, hence it is often used as
the spatial information term in the spatial FCM [9]. To re-
duce the blurring effect at the boundaries of the salient re-
gions, an edge-preserving non-linear filter, anisotropic dif-
fusion filter (ADF) [10] was employed. The gradient mag-
nitude was computed based on eight neighboring pixels,
and the original diffusivity function favoring high-contrast
edges [10] was used. This helped to reduce the noise while
keeping morphological details in the images.

3.1.3 Textural Information

Gabor filtering is often applied for texture feature extrac-
tion, due to its close resemblance to human visual process-
ing. Chen et al. suggested using scale 6, orientation 4, filter
mask size 13×13, and 24 filters for the best image retrieval
performance [11]; we adopted the same settings.

The 24 filtered outputs G were then averaged to cre-
ate a single feature:

gab =

∑
k Gkσk∑
k σk

, k = 1, ..., 24 (4)

where σk was the standard deviation of Gk. The averag-
ing method assigned higher weightings on outputs having
higher variance, since such outputs presented a higher dis-
tinction among different patterns.

3.1.4 Weighted Spatial and Textural FCM Clustering

The ADF and Gabor filters were applied to both LMCT and
LMPET , generating two spatial features and two texture
features for each pixel location:

xj = {CT adf
j , PET adf

j , CT gab
j , PET gab

j }, (5)

Since each feature could carry different weights in
representing a pixel, the distance between the data vector
and cluster center ||xj − vi||2 was changed to a weighted
one:

dij = (
4∑
k

wk(xjk − vik)
2)

1
2 , (6)

The fuzzy clustering objective function for the pro-
posed weighted spatial and textural FCM (WST-FCM) was
thus:

JWST−FCM =
c∑
i

n∑
j

µm
ijd

2
ij (7)



and the fuzzy membership updating function Eq. (3) was
similarly modified with the weighted difference.

We also leveraged the idea of variance-based weight
factor assignment, as proposed by Hung et al. [8]. How-
ever, their approach determined a fixed set of weights using
bootstrapping training for the entire dataset. Our method
was to compute the weights adaptively on each individual
image pair at clustering time, avoiding the need to analyze
the empirical distributions of the dataset and making the
computation more flexible for new data. The weight fac-
tors were calculated using the following equation:

wk =
σk

µk
, k = 1, ..., 4 (8)

where σk and µk were the standard deviation and mean of
the kth feature of the image data x.

3.2 Cluster Number Initialization

From our empirical study, a cluster number between 3 to 8
yielded the best clustering results. Hence, we designed an
iterative pre-processing procedure to determine the number
of clusters for each LMCT and LMPET pair adaptively as
follows. The WST-FCM was executed on down-sized im-
ages iteratively with a cluster number from 3 to 8. The
image was down-sized to a quarter to reduce the execution
time. For each clustering output, a validity index was com-
puted. There were a number of classical validity indices for
FCM, and the index VK [12] was found to comply closely
with our criteria of region delineations. The iteration pro-
ducing the minimum VK was chosen as the cluster number.

4 Learning-based Similarity Measure

After the first three steps – lung and mediastinum extrac-
tion, region delineation and regional feature extraction – a
PET-CT image pair was transformed into a set of regional
features, denoted as F = {f1, f2, ..., fN}, where N is the
number of regions, and fi was the 12-dimensional feature
vector for region i (section 2.3).

Given two image pairs FI and FJ , because N I and
NJ were normally different, pair-wise similarity measure
based on Euclidean distances or histogram intersection
types became unsuitable. Methods to accommodate un-
balanced data pairs with region-based similarity measures
include: (1) The earth mover’s distance (EMD) [13]. (2)
Region weighted sum of minimum distances between re-
gions (we name it RW-MRD) [14]:

D(I, J) =
∑
i

wI
i d

IJ
i = ⟨wI ,dIJ ⟩ (9)

dIJi = min
j

d(f Ii , f
J
j ) (10)

where wI
i was the weight for region i, learned with a triplet

learning approach [15]. (3) The integrated region match-
ing (IRM) method [16], calculating the distances between

two images by creating a multi-to-multi matching between
regions:

D(I, J) =
∑
i,j

si,jdi,j (11)

where di,j was the distance between the two feature vec-
tors, and si,j was the significance credit indicating the im-
portance of di,j for determining the image similarities.

The slow performance of EMD made it less desirable
for fast retrievals, but we used it as a benchmark for dis-
tance computations since it is a well-known technique for
region-based similarity measure. The RW-MRD approach
incorporated region weights, making salient regions con-
tribute more to the similarity measure. However, the algo-
rithm assumed that the region type was known to assign it
a weight, which was not the case for our dataset without re-
gion identification. Secondly, the region matching between
two images was one-to-one only, thus imposing a rigid re-
quirement on segmentation accuracies. The IRM approach
addressed the segmentation inaccuracy issue with its re-
gion matching scheme. However, the significance credit of
region matching was area-based while important regions,
such as tumors, were usually small.

Both RW-MRD and IRM omitted the design on the
feature weights for distance computation between two fea-
ture vectors. Since a 12-dimensional feature vector was
used, the weight of each feature dimension affected the
distances between regions considerably. Therefore, we de-
signed a learning-based similarity measure by integrating
RW-MRD and IRM, and improving on the two problems
mentioned above.

The similarity measure between two PET-CT image
pairs FI and FJ was thus formulated as:

D(I, J) =
∑
i,j

ωi,jsi,jdi,j (12)

where ω was the region weight factor, s was the signifi-
cance credit of region matching, and d was the distance
between two regions. The ways of computing d, s and ω
are discussed below.

4.1 Feature Weighted Region Distance

We describe the method to compute di,j , the distance be-
tween two regions f Ii and fJj in this section:

di,j =

M∑
m

υimfim − υjmfjm
υimfim + υjmfjm

(13)

where m was the index into the feature vector, M was
the feature dimension (12), and υ was the feature weight.
The value υ was determined by both the region and feature
types. For example, the texture features were more repre-
sentative for a tumor, while location played an important
role for background regions.

We chose to define 6 regions: background (RT1), lung
lobes (RT2), mediastinum (RT3), disease in regional lymph



nodes (RT4), tumor areas with lower uptake (RT5), and tu-
mor areas with high uptake and high density (RT6). To dif-
ferentiate the region types and compute feature weights si-
multaneously, a multi-class support vector machine (SVM)
problem was implied.

A multi-class SVM was trained using 20 PET-CT im-
age pairs (about 2.3% of the dataset), which were selected
as they represented the typical examples of the regions. A
linear kernel was used, and a one-versus-all multi-class re-
alization was implemented based on the binary SVM [17].
Hence, 6 linear binary SVMs were trained, and the feature
weights for each region type were derived from the support
vectors as follows:

vk =

S∑
s

αscsxs, k = 1, ..., 6 (14)

where α, c, and x were the Lagrange multipliers, class la-
bels, and M -dimensional support vectors for the kth SVM,
resulting in a 6 × M matrix of feature weights v. There-
fore, υim = vt(i)m where t(i) was the region type of i
determined based on the SVMs trained.

4.2 Region Matching with IRM

We describe the region-matching method based on IRM
[16] for computing si,j , the significance credit of the
matching between two regions f Ii and fJj in this section.

The essence of IRM was that rather than a one-to-one
region matching between two images, a region could be
matched to multiple regions in the other image with each
match contributing differently to the overall image similar-
ity value. The degree of contribution was thus the signifi-
cance credit. This method was useful when the clustering
approach segmented similar objects in different images into
different number of regions with varying sizes. The value
of significance credit was bounded by the following con-
straints:

NJ∑
j

si,j = pi,

NI∑
i

pi = 1 (15)

where pi was the percentage of image covered by region i.
To compute si,j , IRM employed a greedy-type al-

gorithm with a most similar highest priority principle, by
starting from the best matching region pair (i′, j′), allocat-
ing them with a significance credit si′,j′ = min(pi′ , pj′),
and updating pi′ and pj′ by taking away si′,j′ , then itera-
tively moving through the less matching pairs until all pi or
pj went to zero, to create a multi-to-multi region matching
map. The region matching for the tumor area is illustrated
in Figure 3.

4.3 Discriminative Region Weight Learning

We describe the way of generating region weights ωi in this
section. Note that region weights ωi had entirely different

Figure 3. Region matching example for the tumor area
(marked inside red box). (a) Regions of the example Fig-
ure 1. (b) Regions of another PET-CT image pair in the
dataset. (c) Region matching for the tumor area shown as
zoomed views from (a) and (b).

meanings from the significance credit si,j in that ωi repre-
sented the degree of importance of a region for discrimi-
nating two images, while si,j indicated the importance of
the match between two regions for determining similarity
between images.

The value of si,j was related to the sizes of the re-
gions; however, larger regions were not necessarily more
important for differentiating images. For example, when
matching two images, the presence of tumors, which were
usually much smaller than the normal lung lobes area, was
a more important factor. Therefore, we incorporated region
weights ωi into the similarity measure.

We adapted the triplet learning framework [15] to
learn the region weights ωi. Triplet learning was based on
selecting three images FI ,FJ ,FK where FI and FJ were
similar, and FI and FK were dissimilar. The learning al-
gorithm thus enforced the condition: D(I,K) > D(I, J).
Based on the distance functions defined in Eq. (9) and (10),
the condition became:

⟨wI ,dIK⟩ > ⟨wI ,dIJ ⟩
⟨wI ,xIJK⟩ > 0

(16)

where xIJK = dIK − dIJ .
If constructing T such triplets as the training set, to

solve for w, a large-margin optimization with the slack
variables ξi was used:

minw,ξ
1
2w

′w + C
∑T

i ξi
s.t. w′xi ≥ 1− ξi, ξi ≥ 0,w ≥ 0

(17)

where C was a trade-off constant between the empirical
loss ξ and regularization w. The formulation was similar
to SVM, but without the bias term, thus w could be ef-
ficiently solved using a dual variable iterative updating of
the following two steps for the ith triplet:

w = max{
T∑
i

αixi, 0} (18)

αi = min{max{1−w′xi

||xi||2
+ αi, 0}, C} (19)



In our similarity measure function, ωi,j took two pos-
sible values: ωi,j = ωi, if region i and j were of the same
type (ωi was equal to ωj); and ωi,j = ωi + ωj , if region i
and j are of different types, so penalties were given when
images comprised apparently different regions.

To formulate our problem into a triplet learning for-
mat, the similarity measure function was rewritten into:

D(I, J) =
∑

i,j ωi,jsi,jdi,j

=
∑6

k wk

∑
i,j si,jdi,jt

k
i,j

= ⟨w, sd⟩
(20)

where tki,j = 1 if region i or j was of type k, and 0 oth-
erwise; and w was associated with the region type, hence
ωi = wt(i) where t(i) was the region type of i. And a triplet
xIJK was thus sdIK − sdIJ .

Selection of training triplets followed an incremen-
tal approach, starting from a set of positive examples, then
adding in triplets that did not fulfil sdIK > sdIJ , so that
empirical errors were reduced by focusing on triplets lying
close to the separation hyperplane while reducing the train-
ing time required. In total, 250 triplets were selected from
our dataset (out of 870× 869× 868 possible triplets).

5 Experimental Setup

5.1 Materials

There were 870 image pairs selected from PET-CT scans
of 20 cases with NSCLC. The co-registered DICOM im-
ages were acquired using a Siemens TrueV 64-slice PET-
CT scanner (Siemens, Hoffman Estates, IL).

5.2 Method for Retrieval Evaluation

Given a query image, the most similar M images were re-
trieved. The average precision (AP) was taken as the per-
formance metric for measuring the retrieval accuracy [1]:

AP =
1

N

N∑
i

si
M

(21)

where si was the number of actual similar images returned,
and N was the number of tests. All PET-CT image pairs
were used as query images (N = 870). Each one was com-
pared against all images from the other 19 cases, ensuring
results were not skewed to adjacent slices of the same case.
The average precision was evaluated for retrieving 4 and 8
images (M = 4 and M = 8).

The criteria of determining the similarity of a re-
trieved image were: (a) If the query image contained a
tumor, the return result should contain a tumor of similar
texture and structure. (b) If the query image contained dis-
ease in lymph nodes, the return result should contain simi-
lar node appearances. (c) If (a) and (b) above were met, im-
ages showing similar lung field structures should get higher
ranking.

(a) (b)

(c) (d)

Figure 4. Clustering and regions formulated. (a) Cluster-
ing output of standard FCM. (b) Clustering output of non-
weighted FCM. (c) Clustering output of WST-FCM. Num-
ber of clusters is 6. (d) Regions formulated. Number of
regions is 19.

To evaluate the effectiveness of our proposed method
(i.e. RFW-IRM – region weighted similarity measure based
on IRM with feature weights for each region type), we
compared it to the following region-based approaches: FW-
IRM – feature weighted IRM; IRM – the IRM technique
(Eq. (11)); RW-MRD – region weighted minimum region
distances (Eq. (9) and (10)); RFW-MRD – feature-weight
enhanced RW-MRD; and EMD – direct earth mover’s dis-
tance. These approaches were the base techniques that we
designed our method upon.

We also compared our method to three other well-
known non-region based techniques: HIST – a 256 level
histogram generated from both LMCT and LMPET , and
Euclidean distances between the histograms as the simi-
larity measure; GLCM – 4-directional co-occurrence ma-
trix and Haralick features in place of histograms; and
BOF – bag-of-features generated by classifying LMCT and
LMPET into 6 feature categories using k-means clustering.

6 Results

6.1 Illustration of Intermediate Results

An example comparing the clustering performance of (a)
standard FCM, (b) FCM with spatial and textural infor-
mation but no weightings, and (c) our proposed clustering
approach WST-FCM, for the example image given in Fig-
ure 2, is shown in Figure 4. The output from the WST-FCM
algorithm depicted a closer approximation of actual salient
regions; and was closer to our expectation of the region
delineation. Figure 4d shows the final region delineation
result after each connected component was identified as an
individual region. Figure 5a shows the region types iden-
tified for Figure 4b. The feature weights learned based on
region type differentiation are illustrated in Figure 5b. Fig-
ure 6 shows the weights of the 6 types of regions from our
training results.



(a)

(b)

Figure 5. Region types and feature weights. (a) Region
types determined for Figure 4d. (b) Feature weights learned
for the 6 types of regions – v.

Figure 6. Region weights – w.

6.2 Results of Retrievals

The average precision results are illustrated in Table 1 and
Figure 7. Our method (RFW-IRM) achieved the highest
accuracy, which was 88.5% when retrieving 4 most similar
images, and 83.6% for 8 similar images. This was on av-
erage about 8% and 12% improvement over the RW-MRD
and IRM methods that we used as the basis algorithms, il-
lustrating the advantage of incorporating IRM and region
weights into the similarity measure. By comparing the
results of our method with RFW-MRD, the advantage of
using an IRM type of region distance computations was
shown. Performance enhancement from incorporating re-

RFW-IRM FW-IRM IRM
88.5%/83.6% 82.9%/79.1% 76.3%/72.9%

RW-MRD RFW-MRD EMD
80.6%/75.2% 84.3%/80.2% 65.2%/64.4%

HIST GLCM BOF
68.4%/67.1% 42.9%/45.2% 58.6%/57.1%

Table 1. Average precision when returning 4 or 8 similar
images – (AP of top-4)/(AP of top-8)

Figure 7. Average precision when returning 4 or 8 similar
images.

(1) (2)

(3) (4)

Figure 8. The top 4 matches from other patients, when
compared with the query image pair from Figure 1.

gion and feature weights was clearly indicated by com-
paring the results of RFW-IRM, FW-IRM and IRM. All
region-based methods, except EMD, obtained higher aver-
age precisions over the other global or local image retrieval
techniques – HIST, GLCM and BOF.

Figure 8 displays the retrieval results for the example
image in Figure 1. The query image was compared against
all the images from the other 19 cases (818 PET-CT im-
age pairs), and the four best matching image pairs were re-
trieved. The returned images exhibit similar tumor, lymph
node, and lung field characteristics in decreasing order of
similarity.

We performed another test by retrieving one best
matching image from each case (excluding the query im-
age from the case it belongs to), thus 20 retrieval results
for one query image; then ranking the results according to
the similarity level. Figure 9 shows the 4 top ranked im-
ages retrieved when compared to the case in Figure 1. The
4th image pair was the least similar and had different tu-
mor characteristics; but this was a better match than the
remaining 16 results. This test shows the effectiveness of
ranking among retrieval results, when the retrieved images
exhibited diverse patterns.

7 Conclusion

We have presented a region-based image retrieval frame-
work for thoracic PET-CT images. The framework can
retrieve images with similar characteristics to a primary
lung tumor and with disease in regional lymph nodes. Our
method does not require precise segmentation. We incorpo-
rated spatial and textural information with variance-based
weights into the standard FCM clustering. The lung and
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Figure 9. The top 4 matches from 4 cases, when compared
with the query image pair from Figure 1.

mediastinum were divided into regions of various sizes,
and each region was represented by a 12-dimensional fea-
ture vector comprising texture, structure and location fea-
tures. We show that feature weights and region weights im-
prove the retrieval accuracy; a multi-to-multi region match-
ing provides higher average precision; and region-based
methods perform better than the histogram, co-occurrence
matrix and bag-of-features methods.
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