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ABSTRACT
Content-based medical image retrieval is likely becoming
an important tool to provide valuable information to as-
sist physician to make critical diagnosis decisions. While
most existing works perform the retrieval based on low-level
visual features, the pathological spatial context, which is
critical for analysis of the disease characteristics, has been
less studied. We thus aim to effectively extract and repre-
sent the spatial context of pathological tissues, and design
a novel hierarchical spatial matching (HSM) method based
on the spatial pyramid matching. Our method is able to
(1) handle the translation variations of the main pathologi-
cal object; (2) describe the spatial information surrounding
the pathological object in an adaptive scale; and (3) com-
pute image similarities with an optimally weighted distance
function. The proposed method shows better retrieval per-
formance comparing to the other widely used techniques.

Categories and Subject Descriptors
H.3.3 [Information storage and retrieval]: Retrieval
models

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
Digital medical images are produced in ever increasing

quantities and used for diagnosis and therapy. There is great
interest for physicians to use imaging studies from previous
patients as a reference guide to diagnose the current patient.
A system to automatically retrieve similar images for a given
one can thus be useful for assisting the diagnosis process, and
recent works have shown some promising results [12, 4, 2].

.
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Medical image similarities are normally computed by com-
paring their low-level visual features, such as texture and
shape [9]. These low-level visual features can be effective in
differentiating pathological tissues from normal structures,
but only representing local regional features; while it is be-
lieved that disease characteristics can be better evaluated
based on the spatial context that the pathological tissue is
in. For example, to stage lung cancer, whether the tumor
invades into its adjacent structures (e.g. mediastinum) is a
critical factor.

Some recent works have thus incorporated spatial infor-
mation in various ways, such as using the pixel coordinates
as a feature vector [1], combining the feature words into
a sliding window representation [10] or a circular histogram
[13], and applying the spatial pyramid matching (SPM) [7] in
medical images [3]. These approaches are normally built on
the bag-of-words model. The spatial information is encoded
by first dividing the image into a grid structure of image
blocks, in coordinate, sliding window, circular space, or a
multi-scale pyramid; and then the feature-word histograms
of all blocks are concatenated into a large histogram as the
feature descriptor of the image. A histogram intersection or
Euclidean type of vector-based distance function is usually
used to compute the differences between images.

These spatial descriptors, however, are often too rigid to
handle spatial variations. For example, given two images
containing two similar tumors, e.g. both tumors are of round
shapes and near to the mediastinum, except one being in the
left lung and the other in the right lung, the derived distance
between the two images would be quite large. However, the
two images should be considered similar, since the abso-
lute locations of the pathological objects are of less diag-
nostic interests than their relative spatial relationships with
adjacent anatomical structures. Furthermore, a commonly
overlooked issue is that in the distance function, uniform
or predefined feature weights are normally employed. How-
ever, it is often acknowledged that different features should
carry different weights, and image blocks at more salient lo-
cations should be more important for measuring the image
similarities than those at the background.

In light of the above, in this paper, we propose a hier-
archical spatial matching (HSM) method for medical image
retrieval, based on the concept of SPM, but with the follow-
ing major differences: (i) a multi-level partition is originated
from the most salient area (e.g. center of a tumor), to han-
dle spatial translation variances between images respective
to the main pathological objects; (ii) at one level, the parti-
tion blocks are of different sizes and concentric around the



Figure 1: Illustration of our HSM method. (a) A PET-CT image transaxial slice pair (after preprocessing),
with a primary lung tumor shown as high uptake values on PET (large black region). (b) Bag-of-words
indicating feature words with grayscale values. (c) The hierarchical partition – blue lines depicting level-0
border, orange dividing into level-1 blocks, green further partitioning into level-2 blocks, and red dot showing
the division origin. (d) The feature word distribution (upper) and the associated weights (lower), with feature
index as the x axis. (e) A similar image pair retrieved by the query image pair in (a).

origin, to represent the spatial features at and surrounding
the pathological area in an adaptive scale; and (iii) a dis-
criminative learning-based approach is designed to assign a
weight of each feature word for each block at each level, to
compute a weighted similarity measure.

In this paper, we present our work using positron emis-
sion tomography – computed tomography (PET-CT) tho-
racic images from patients with non-small cell lung cancer
(NSCLC). PET-CT imaging, which is widely used in lung
cancer staging, produces co-registered anatomical (CT) and
functional (PET) patient information from a single scanning
session, creating a 3D image set comprising co-registered
transaxial slice pairs. Since the characteristics of the pri-
mary lung tumor, especially its spatial context (e.g. adja-
cent to the lung wall, invasion into the mediastinum, etc),
are important to stage NSCLC, the retrieved images are ex-
pected to exhibit such similar pathological patterns to the
query image. To the best of our knowledge, the only exist-
ing work in this scope is our previous work [11], in which
pathological regions are first detected to extract features of
the detected regions, and hence the retrieval performance
heavily depends on the detection accuracy. In this paper,
we thus propose the HSM approach to avoid the stringent
accuracy requirement on the pathological region detection.

2. HIERARCHICAL SPATIAL MATCHING
Figure 1 shows an overview of our proposed method. We

measure the similarity between two images by (i) generating
the bag-of-words representation of each image based on Ga-
bor and local spatial features, (ii) computing a feature vec-
tor for each image with a 3-level and originated hierarchical
partition, and (iii) calculating a learning-based weighted dis-
tance between the two feature vectors. Images having high
degrees of matching with the query image are then retrieved.

It is worth mentioning that our method is designed to be
easily generalizable to other anatomical domains and imag-
ing modalities, especially that the local features used for
bag-of-words generation (section 2.1) and the discrimina-
tive learning-based similarity measure (section 2.3) can be
directly applied. Although the detailed structure of the hi-
erarchical partition model (section 2.2) is optimized for rep-

resenting the thoracic imaging characteristics, the overall
concept is still applicable to other imaging studies where
the relative spatial relationships between the pathological
object and its surrounding structures are important, by first
locating the pathological centroid, and then constructing a
multi-level hierarchy around the centroid.

2.1 Bag-of-words Generation
In recent years, the bag-of-words model has become a very

popular method for image classification and retrieval. It
works by quantizing visual features extracted over image
patches or keypoints into distinct categories of visual words,
and using an orderless histogram to indicate the number of
occurrences of each visual word in an image. In our method,
we focused on designing suitable features to effectively differ-
entiate various types of pathological and anatomical struc-
tures, such as tumors, lung fields and mediastinum.

To do this, we first preprocessed each PET-CT slice pair
for every 3D image set to roughly extract the lung and me-
diastinum areas from the whole image slice, by removing
the patient bed, other soft tissues and background using the
Otsu thresholding and connected component analysis [11].

Then, 24 Gabor filters (with scale 6, orientation 4 and
mask size 13× 13) were applied on each PET-CT slice pair
(24 Gabor filters processed for PET and 24 for CT), to ex-
tract the texture features. The PET-CT slice pair was then
divided into a grid of 4 × 4 pixel patches, forming aligned
grid pair of PET and CT. Each PET-CT patch could then
be represented by 48 Gabor filtered images. To reduce the
feature dimension, the 24 Gabor filtered PET (and then CT)
images G were weighted combined into one image G:

G =

∑24
k=1 σkGk∑24
k=1 σk

(1)

where σk was the standard deviation of the kth filtered im-
age. Based on such a combined PET (and then CT) image,
the mean, minimum and maximum values were calculated.
Subsequently, each PET-CT patch was represented by a 6-
dimensional feature vector f .

Next, to make the features more discriminative, we in-
corporated local spatial information into the feature vector,
based on the local auto-correlation of feature vectors [6].



Figure 2: Illustration of the auto-correlation feature.

The first-order auto-correlation g(i,a) was obtained by:

g(i,a) = f(i)f(i+ a)T (2)

where f(i) was the 6-dimensional feature vector of PET-
CT patch i, a was the displacement vector to index the 8
immediate neighboring patches of patch i (Figure 2), and
g(i,a) thus encoded the local spatial information around
patch i. Each patch i was then represented by {f ,g}, with
a total dimension of 294 (i.e. 6 + 8 × 6 × 6). We chose to
use only the first-order auto-correlation because the feature
dimension would increase exponentially with the increase in
the order.

A k-means clustering algorithm was then performed on
the grid of feature vectors to generate 16 categories of visual
words. The number of clusters was chosen as 16 empirically.
Each PET-CT patch was then assigned to the nearest visual
word. The bag-of-words representation of the PET-CT im-
age slice pair was thus a histogram counting the occurrence
frequencies of all visual words.

2.2 Hierarchical Partition Model
Since the bag-of-words representation discards the spatial

order of the local feature vectors, two images with similar
visual word histograms but different structural information
can not be differentiated. To describe the spatial features
for thoracic images, here we designed a hierarchical partition
model.

First, we introduced a division origin, which was the patch
perceived as the most probably pathological. For this, we
simply chose the patch having the highest mean standard
uptake value (SUV) [14] in the PET image, as high up-
take values normally indicated area of the primary tumor or
metastases. Note that since we only needed to detect one
single patch as the origin and not to detect the entire patho-
logical area, this detection was essentially different from the
previous tumor detection approach [11]. For normal images
without pathology, the division origins were still detected.
This was not a problem for matching because the distribu-
tions of visual words around the origins would be different
between normal images and the ones with pathology.

We then created a 3-level hierarchical partition based on
the division origin (Figure 3):

1) Level-0: A single large block represented level-0. De-
pending on whether the origin was in the left or right half of
the image, the block would cover the left or right half of the
image patches. We used only half of the image because if
a tumor was present in the left lung, we wanted to retrieve
images with similar patterns in either the left or right lung
(together with the left or right side of the mediastinum), not
to match the entire thoracic area. And rather than simply
combining all visual words into one histogram, each visual
word was weighted according to its distance to the origin to

Figure 3: Illustration of the partition hierarchy. The
upper row shows the case when the origin (i.e. the
red block) is on the left, and the lower row for origin
on the right. The upper level-0 image also shows
an image patch (in gray) with its distance d to the
origin.

generate the level-0 feature vector H0:

H0 =
∑
i

exp(−di/α)vi (3)

where vi was a vector of size M (16 in our case) with one
non-zero element indicating the visual word of patch i, and
di was the Chebyshev distance between patch i and the ori-
gin, and α was a constant factor (chosen as 10 empirically).
In this way, the patches were considered as arranged in con-
centric circles around the origin, and the patches nearer to
the origin would be more important for image matching.

2) Level-1: Four blocks were created by extending verti-
cal and horizontal lines from the division origin. Such parti-
tions were to capture the spatial information near to the me-
diastinum or the lung wall, and to differentiate the features
at the anterior or posterior of the lung field. The feature
vector of each block was constructed in the same way as the
level-0 features, where α was chosen as 20 so that the weight
differences between patches within one block were smaller.
Indexing the four blocks as la (the block near to the lung
wall and above the origin), ma (the block near to the me-
diastinum and above the origin), lb (the block near to the
lung wall and below the origin), and mb (the block near to
the mediastinuma and below the origin), the level-1 feature
H1 was then concatenated by:

H1 = {hla,hma,hlb,hmb} (4)

Note that if the origin was in the left half of the image, la
and lb would be to the left of the origin, and ma and mb
to the right of the origin. The positions of the two sets
of blocks would be swapped if the origin was in the right
half of the image. The four blocks could also be of differ-
ent sizes, depending on the location of the division origin;
this made the level-1 features more discriminative between
images. The feature vector also limited the rotation invari-
ance within each block not across blocks, since each block
represented roughly different anatomical areas of the thorax.

3) Level-2: Each level-1 block was divided evenly into
four blocks, hence totally 16 blocks were formed at level-
2. The inner most four blocks adjacent to the origin repre-
sented the patches that were nearer to the pathological area,



while the outer blocks would contain more normal anatom-
ical structures. The feature vector of each block was also
computed in the same way as the level-0 features, where
α was further increased to 30 so that the further blocks
would contribute considerably to the similarity computa-
tion at level-2. The feature vectors of all blocks were then
concatenated as the level-2 feature H2:

H2 = {h0
la,h

1
la,h

2
la,h

3
la,h

0
ma, ...,h

3
mb} (5)

The hierarchical feature vector H of a PET-CT image slice
pair was thus a concatenation from all of three levels:

H = {H0,H1,H2} (6)

with a total dimension of M+4×M+16×M , with M = 16.
Although we could extend the hierarchy with more levels,
the feature dimension would increase exponentially. We also
used only three levels to follow the convention used by SPM.

On a side note, since a patient’s PET-CT image is actually
a 3D image set, retrieval of 3D image sets based on their
overall features is of practical interests as well. While the
above hierarchical partition was performed for 2D PET-CT
image slice pairs, the feature of a 3D image set H3D was
obtained as a weighted combination of all the comprising
2D images:

H3D =

∑
n pnH

n∑
n pn

(7)

where n indexed the slice pairs of the 3D image set, and
pn was the mean SUV of the origin patch, so that image
slices containing more prominent pathological areas would
contribute more to the overall 3D features; and the feature
dimension of H3D was the same as the H.

2.3 Discriminative Matching
Since the image feature H was concatenated from all block

features without any weights, all blocks would be equally im-
portant for differentiating between images. However, intu-
itively, blocks nearer to the origin at the finer levels should
carry higher weights; and within one block, some feature
words would be more discriminative than the others. There-
fore in our method, we designed a learning-based method
based on the triplet-learning model [5] to compute optimal
weights for image matching, and the weights were not only
level-specific, but also specific to each feature word of each
block in the partition hierarchy.

To do this, we first defined the distance between two image
features HI and HJ as DI,J :

DI,J = 〈Ω · |HI −HJ |
HI + HJ

〉 = 〈Ω ·HI,J〉 (8)

where Ω was the weight vector of the same size as H.
To compute Ω, the triplet learning method was adapted.

Assuming three images I, J and K were given, where I
and J were similar and I and K were dissimilar, then the
distance between I and J would be less than between I
and K: DI,J < DI,K . With Q such training triplets Tq =
{I, J,K}, a large-margin optimization was then used to solve
for Ω:

argminΩ,ξ≥0
1
2
‖Ω‖2 + c

∑
q ξq

s.t. ∀q : 〈Ω · (HI,K −HI,J)〉 ≥ 1− ξq
(9)

To construct the Q training samples T , we first created
a P × P matrix U: Ui,j = 1 if the images i and j were

similar, and 0 otherwise. Because of the large possible com-
binations of triplets and the possibility of over-fitting, we
chose only a subset of triplets based on the label U, using a
two-step process. First, we selected N pairs of similar im-
ages (Ui,j = 1) that were viewed as very similar. The reason
of such selection was that, we noticed that among all pairs
of similar images, some pairs exhibited less obvious similar-
ities, and choosing such pairs could introduce more bias in
the training. Second, for each I, J pair selected, if XI images
were indicated as dissimilar to I in U, XI triplets were then
formed: T (i) = {I, J, dissimilar(I)}, i = 1, ..., XI . This
training sample size was significantly lower than the max-
imum possible size, and the selection process ensured that
the training would focus on highly discriminative images.

To simplify the training process, the labeling U was con-
structed for 3D image sets. To compute Ω for 2D image slice
pairs, we chose one image slice pair that exhibited obvious
tumor area from each 3D image set to compute the feature
vector H. Then by applying the training sample selection
and optimization, the weight Ω was computed for 2D dis-
tance measure. We also performed another training process
by replacing the 2D feature vector with H3D, and the de-
rived Ω thus represented the weights corresponding to the
feature vectors of 3D image sets.

3. EXPERIMENTS AND RESULTS

3.1 Image Datasets
In this study, we collected 40 PET-CT patient studies (3D

image sets) with a total of 1134 thoracic slice pairs from
the Royal Prince Alfred Hospital, Sydney. Primary lung
tumors were visible in all the 40 image sets, with a variety
of patterns. For each patient study, the other 39 image sets
were marked similar or dissimilar as the ground truth for
retrieval, based on the appearance and spatial characteristics
of tumors. The number of similar image sets for each set
ranged from 1 to 11, with an average of 4.75.

3.2 Experimental Methods
We performed two types of image retrieval experiments:
1) Retrieval of 3D image sets: By using each 3D

image set as a query image, the other 39 sets were ranked
according to their similarity levels with the query image.
The retrieval results were then compared with the ground
truth to compute the average precision and recall.

2) Retrieval of 2D image slices: We selected 5 key
images (i.e. 2D image slice pairs exhibiting tumors) from
each 3D image set as the query test set. Then the ground
truth was propagated from the 3D image set level to all 2D
images – if two images belonged to two 3D sets that were
marked similar, the two 2D images were considered similar
as well. Each query image was then compared to all images
of the other 39 3D image sets. The retrieval results were
then measured against the propagated ground truth, and
the average precisions were computed for the Top-3, -5 and
-7 retrievals.

Besides evaluating the retrieval performance of our pro-
posed HSM method, we also assessed the effects of its ma-
jor components by: (i) omitting the local spatial features
(auto-correlation) from the feature extraction for bag-of-
words representation; (ii) using subsets of the three levels
of spatial features other than all three levels; and (iii) using
pre-defined level weights for the distance function.



Figure 4: The retrieval precision-recall curves, eval-
uating various components – 3D image sets.

Figure 5: The average precisions of most similar re-
trievals, evaluating various components – 2D image
slices.

We then compared our HSM method with the other ap-
proaches that were often used in image retrievals, includ-
ing (i) the bag-of-words model with patch-based features –
BOW, which did not include any spatial information; (ii) the
bag-of-words model with the SIFT keypoints [8] – BoSW,
which encoded the local spatial features; and (iii) the SPM
method (built on BOW), which described the spatial infor-
mation with a certain balance between subdividing and dis-
ordering. We also compared the proposed method with our
previous work (region-based) [11] that reported good results
on retrievals of PET-CT thoracic images.

3.3 Evaluation of Components
As shown in Figure 4, if the partition hierarchy was only

of two levels – level-0 and level-1 only (L0+L1 ), the re-
trieval performance was slightly lower than HSM, suggesting
the benefit of including the level-2 features. By comparing
L0+L1 with L0-only (level-0 features only), the advantage
of introducing level-1 features can be clearly seen. We tested
all the other combinations of the three levels of features, and
using all three levels (HSM ) resulted in the highest average
precisions. We also tested further increasing to four levels,
but the improvements were negligible.

Not surprisingly, with optimal feature weights, HSM achieved
much higher precisions than without weighting for all fea-
ture words (Non-w). If the weights were assigned according
to the hierarchy levels in the same way as SPM, the preci-
sions were on average 1% higher than Non-w for recall levels

Figure 6: The retrieval precision-recall curves, com-
paring with the other methods – 3D image sets.

Figure 7: The average precisions of most similar re-
trievals, comparing with the other methods – 2D
image slices.

from 0.1 to 0.4, but about 1% lower than Non-w for the rest
of recall levels, which were thus all lower than HSM. It was
also observed that when the recall level reached to 0.9 or
1, the effect of feature weights decreased. This was because
our training procedure was tuned to match images that were
very similar, not all degrees of similarity.

We also tested generating the bag-of-words representation
based on the Gabor features only without the local auto-
correlation. Using level-0 features computed from such bag-
of-words outputs (T-L0 only), and comparing its precision
readings with L0-only, the advantage of incorporating the
local spatial features was prominent.

Similarly consistent results were also obtained for the 2D
image slice tests, as shown in Figure 5. Notice that some-
times when the number of retrievals increased (e.g. for Top-3
to Top-5), the average precisions tended to increase, as more
similar images were actually ranked lower than dissimilar
images during the retrieval.

3.4 Comparison with The Other Methods
As shown in Figure 6, our HSM method outperformed all

the other approaches. The BOW method performed better
than BoSW, which suggested that a dense feature grid was
more suitable than keypoint representations for this dataset.
As expected, SPM improved considerably over BoSW and
BOW, since it modeled the spatial information. The im-
provement of our method over SPM indicated the benefit of
our partition hierarchy and the optimized feature weights.



Figure 8: Example retrievals. Left two columns:
Example 1. Right two columns: Example 2. Top
row: the query image slice pairs (with primary
lung tumors). Middle row: the most similar im-
ages retrieved using our HSM (exhibiting similar tu-
mor characteristics to corresponding query images).
Bottom row: the most similar images retrieved us-
ing SPM (not containing tumors, but with an ab-
normal lymph node in Example 1 possibly mistaken
as a tumor).

HSM also achieved on average 8% higher precision than our
previous work [11], which was encouraging that the new type
of approach could extract the discriminative features well
without accurately detecting the pathological regions.

Since our learning process for the feature weights can be
easily incorporated into the BOW, BoSW and SPM meth-
ods, we also tested these three methods with optimized weights.
The results showed that weighted SPM exhibited the largest
improvement (7-16% for all recall levels), but still lower than
our HSM method (4-8%). This test was mainly used to show
the advantage of our hierarchical partition.

For 2D tests, SPM actually performed better than our
previous work (Figure 7). This was because our previous
method was designed for 3D features, and when retesting it
for 2D image slices, not all techniques were actually utilized.

We also show two examples comparing the Top-1 retrieval
outputs by our HSM method and the standard SPM ap-
proach, as in Figure 8. While our method was able to re-
trieve images that depicted similar tumor appearances and
spatial contexts (both near to the mediastinum for Example
1, and near to the posterior lung field for Example 2), SPM
retrieved images that were more similar in shape of the lung
fields only.

Since our proposed HSM method was based on the bag-of-
words model over 4×4 image patches, the computation was
low-cost. On a 2.66 GHz PC with Matlab v2009b, processing
of one PET-CT image slice pair took about 2 seconds.

4. CONCLUSIONS
We developed a novel matching method incorporating spa-

tial contexts for medical image retrieval. Inspired by the
popular SPM technique, and with the considerations of the
special features presented in medical images, we designed
the HSM method that could well retrieve images with sim-
ilar pathological characteristics, especially the spatial fea-
tures surrounding the pathological areas. Our evaluation
on clinical data showed high retrieval precisions, and advan-
tages over the other approaches. Our proposed method can

also be easily adapted to other imaging domains, which we
will investigate in further studies.
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